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EXECUTIVE SUMMARY 

The Horizon 2020 (H2020) project, “Evolution of Copernicus Land Services based on Sentinel data” 
(ECoLaSS) addresses the H2020 Work Programme 5 iii. Leadership in Enabling and Industrial technologies 
- Space, specifically the Topic EO-3-2016: Evolution of Copernicus services. ECoLaSS is being conducted 
from 2017–2019 and aims at developing and prototypically demonstrating selected innovative products 
and methods as candidates for future next-generation operational Copernicus Land Monitoring Service 
(CLMS) products of the pan-European and Global Components. ECoLaSS assesses the operational 
readiness of such candidate products and eventually suggests some of these for implementation. This 
shall enable the key CLMS stakeholders (i.e. mainly the Entrusted European Entities (EEE) EEA and JRC) to 
take informed decisions on potential procurement as (part of) the next generation of Copernicus Land 
services from 2020 onwards. 

To achieve this goal, ECoLaSS makes full use of dense time series of High-Resolution (HR) Sentinel-2 
optical and Sentinel-1 Synthetic Aperture Radar (SAR) data, complemented by Medium-Resolution (MR) 
Sentinel-3 optical data if needed and feasible. Rapidly evolving scientific developments as well as user 
requirements are continuously analysed in a close stakeholder interaction process, targeting a future 
pan-European roll-out of new/improved CLMS products, and assessing the potential transferability to 
global applications. 
 
This report constitutes a methods compendium for the investigated approaches of the work package 33 
“Time Series Analysis for Thematic Classification” of ECoLaSS Task 3 (Automated High Data Volume 
Processing Lines). The objective of this WP to develop a framework for time series analysis for thematic 
classification based on Sentinel multi-sensor constellation. For this purpose, the WPP aims at developing 
and benchmarking (i) optical image compositing methods specifically dedicated to thematic 
classification, and (ii) time series classification methods for HR layers, crop type and new land cover/land 
use products. With the others WP of ECoLaSS Task 3 (Automated High Data Volume Processing Lines), it 
constitutes a basis for the demonstration activities of Task 4 (Thematic Proof-of-Concept/Prototype on 
Continental/Global Scale), i.e. High Resolution Layers (HRLs) Grassland, Imperviousness and Forest, Crop 
Mask and Crop type and new LC/LU products. 
 
Section 1 of the document present the purpose and objectives of the WP, and the document structure. 
Section 2 describes the state-of-the-art methods and strategies for the selection of candidate methods 
for the benchmarking. It reviews the automated reference sampling methods and the image compositing 
methods needed for classification, and then provides state-of-the-art of time series classification 
methods for time series HRLs, agriculture and new land cover products. Based on these reviews and on 
the selection of candidate methods, section 3 concerns the testing and benchmarking of input data for 
classification and of time series classification approaches. For each benchmark, a conclusion explains the 
main outcomes and recommendations of the analysis. The benchmark of automated reference sampling 
is performed on two methods, five compositing methods are assessed and compared, and classification 
approaches are benchmarked separately for different thematic fields: (i) Imperviousness, (ii) Forest, (iii) 
Grassland, (iv) Agriculture, and (v) new land cover products. For each of the thematic classifications, 
different inputs, classification methods and parameters are assessed. Finally, section 4 concludes the 
document by summarising the main outcomes of the benchmarking. 
 
The ECoLaSS project follows a two-phased approach of two times 18 months duration. The first issue of 
this deliverable presented preliminary results. In the second 18-month project cycle, the second issue of 
this deliverable is published, containing all relevant updates and final results after completion of all 
technical developments activities within Task 3 and Task 4 WPs. 
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1 Introduction 

The Horizon 2020 (H2020) project, “Evolution of Copernicus Land Services based on Sentinel data” 
(ECoLaSS) addresses the H2020 Work Programme 5 iii. Leadership in Enabling and Industrial technologies 
- Space, specifically the Topic EO-3-2016: Evolution of Copernicus services. ECoLaSS is being 
implemented from 2017–2019 and aims at developing innovative methods, algorithms and prototypes to 
improve and invent future next-generation operational Copernicus Land services from 2020 onwards, for 
the pan-European and Global Components.  
 
ECoLaSS makes full use of dense Sentinel time series of High-Resolution (HR) Sentinel-2 optical and 
Sentinel-1 Synthetic Aperture Radar (SAR) data, complemented by Medium-Resolution (MR) Sentinel-3 
optical data if needed and feasible. Rapidly evolving scientific developments as well as user requirements 
are continuously analyzed in a close stakeholder interaction process, targeting a future pan-European 
roll-out of new/improved CLMS products, and assessing the potential transferability to global 
applications. 
  
This report constitutes a methods compendium for the investigated approaches of the work package 
(WP) 33 “Time Series Analysis for Thematic Classification” of ECoLaSS Task 3 (Automated High Data 
Volume Processing Lines).  

1.1 Purpose and objectives of the WP 

The development of innovative Copernicus Land processing lines in Task 3 is first and foremost targeting 
the design of approaches for synergistic and integrated utilization of dense time series of high volumes of 
Sentinel-1/-2/-3 for mapping improved/new LC/LU products, variables and indicators. Therefore, the 
development work of Task 3 has been grouped into five methodological WP addressing methods 
development for time series integration, time series pre-processing, and development of methods for 
analyzing time series with respect to either thematic classification lines or change detection processes. 
 
WP 33 aims to develop a framework for time series analysis for thematic classification based on Sentinel 
multi-sensor constellation. The objectives of the WP are:  

 to develop and benchmark optical image compositing methods specifically dedicated to thematic 
classification: adaptive compositing period, temporal resampling, feature based compositing, 
alternative time series classification methods over test sites 

 to develop time series classification methods for HR layers, crop type and new land cover/land 
use products 

The methods tested and algorithms described in this WP supports the demonstration activities for the 
development of various prototypes in ECoLaSS Task 4 (Thematic Proof-of-Concept/Prototype on 
Continental/Global Scale), i.e. High Resolution Layers (HRLs), Grassland, Crop type and new LC/LU 
products. The figures below show respectively the distribution of the tests sites within the larger demo 
sites in Europe (Figure 1-1) and Africa (Figure 1-2). 
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Figure 1-1: ECoLaSS Test- and Demonstration- Sites in Europe 

 

 
 

Figure 1-2: ECoLaSS test sites in Africa 

 
The ECoLaSS project follows a two-phased approach of two times 18 months duration. The first issue of 
this deliverable presented preliminary results. In the second 18-month project cycle, a second issue of 
this deliverable is published, containing all relevant updates concerning the benchmarking of input data 
for classification as well as the time series classification methods. 
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1.2 Document structure 

After this introduction, the document is organized in three main sections: 
- Section 2 provides a review on the inputs needed for classification (reference sampling and 

image compositing) and on the time series classification methods for HRLs, agriculture and new 
land cover products; 

- Section 3 presents the testing and benchmarking of the candidate methods selected in the 
review for automated reference sampling, compositing methods and time series classification 
methods; 

- Section 4 gives conclusions and an outlook. 
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2 Review (theory/state of the art)  

The following subchapters describe the state-of-the-art of automated reference sampling (section 2.1), 
optical image compositing (section 2.2) and time series classification methods (section 2.3).  
 

2.1 Automated reference sampling  

The quality of the reference dataset, used for training or labeling, is the key for the accuracy of each 
classification result. Inappropriate training samples were indeed identified as the main source of errors in 
many classification processes (Pal et al., 2006). For instance, Foody and Arora (1997) showed that the 
choice of training samples had a significant effect on the classification results, whereas changing the 
classifier model (the number of layers in a neural network) was not significant. Nowadays, a lot of 
ancillary data is available that facilitates sample collection for training data (Gómez et al. 2016), e.g. field 
crop type data that is provided by European farmers in order to receive subsidies. Also, forest and leave 
type sample data can be derived from existing land cover maps. Although most land cover classes are 
relatively persistent over time, the sample quality can still be improved by suitable reference sampling 
techniques.  
 
On a spatial basis, most approaches try to minimize the amount of outliers by applying a negative buffer 
before performing the spatial sampling and therefore, to avoid the selection of samples at LC class 
borders (according to the outdated map) and by excluding very small polygons (Blaes et al., 2005, 
Radoux et al. 2014, Inglada et al. 2017). For instance, the average per-field reflectance is extracted in 
Blaes et al. (2005) without the border pixels using a 15-m buffer zone and used for the parcel-based 
classifications. 
 
Radoux et al. (2014) investigate operational methods for the automated classification of optical images, 
with the objective to establish that supervised classifiers can be trained from existing thematic maps. 
Their hypothesis is that the automated extraction of knowledge from existing maps is a sound alternative 
to the collection of highly reliable training samples from field surveys or from the most recent very high-
resolution image interpretation. In order to mitigate the effect of potential errors in those maps, they 
propose an approach for cleaning the training datasets by excluding outliers from the distribution of the 
spectral signatures. The proposed strategy made use of a probabilistic iterative trimming. This method 
has already been used in remote sensing for change detection (Radoux et al., 2010, Colditz et al., 2012). 
However, it has rarely been applied for training sample cleaning, which was its initial purpose. Iterative 
trimming consists of two iterative steps: (i) estimate the distribution of the spectral values within the 
training sample for a given land cover class and (ii) remove outliers from the sample based on a constant 
probability threshold. The iteration stops when no more outliers are detected. This study showed that 
the quality of the classification results based on local training set selection and self-cleaning could 
automatically yield a more accurate map than the original reference dataset. However, a major 
drawback of iterative trimming lies in the fact that it operates in a class-specific approach: in the case of 
a class dominated by mislabelled pixels, well-labelled pixels are consequently considered as outliers 
(Waldner et al., 2015). 
 
Since outliers are a common problem in many real world datasets, several machine learning algorithms 
exist to solve the problem. For the problem of cleaning automatically generated training datasets for 
large area remote sensing classification problems, the algorithms should be efficient for large sample 
sizes, should work well for high-dimensional datasets and should deal with complex unknown 
distributions. The Isolation Forest (iForest) is a promising state of the art approach that fulfils all these 
properties (Liu et al. 2008). The iForest approach directly isolates outliers. This is in contrast to most 
other outlier detection methods which learn the structure of the normal instances and then identify 
outliers if they do not fit this structure. The direct outlier isolation takes advantage of two properties of 
outliers: i) they are less frequent than the normal instances and ii) their feature patterns are different 
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from the normal instances’ feature patterns. The iForest is an ensemble of Isolation Trees (iTree) which is 
a tree structure that isolates such few and different instances. The key isolation characteristic of an iTree 
is that anomalies are isolated closer to the root of the tree and normal instances later in the tree. Apart 
of its properties to be optimal for high-dimensional datasets and large sample sizes, the iForest does not 
require the features to be scaled and is not very sensitive to parameters leading to overfitting or 
underfitting (Liu et al. 2008). It can be assumed that, as in the case of the frequently used Random Forest 
classifier (Breiman 2001), good results can be achieved with default parameters. The latter aspect is 
particularly important for the outlier detection because, in contrast to the case of a supervised 
classification task with reliable labels, tuning of parameters would be a non-trivial task. 
 
The One-Class Support Vector Machine (OCSVM) (Schölkopf et al 1999) is a suitable approach for outlier 
detection with high dimensional datasets and complex non-linear class distributions. The OCSVM fits a 
maximal margin hyperplane to separate the training instances (all of the same class) from the origin of 
the feature space. To be able to model non-linear distributions, the kernel trick can be used to map the 
input data in a higher-dimensional feature space. As a result, the linear separating hyperplane in the 
higher-dimensional feature space corresponds to a non-linear plane in the input data space. The 
mapping in the higher-dimensional feature space is performed via a kernel (usually the radial basis 
function kernel) which has to be defined together with at least one parameters which can be sensitive 
with respect to the resulting model. Additionally, the OCSVM requires the nu parameter during training 
which tunes the upper bound of the fraction of outliers in the training dataset (Schölkopf et al 1999). It is 
worth mentioning that the Support Vector Data Description (SVDD), another frequently used method for 
outlier detection, is similar to the OCSVM and when used with a Radial Basis Function Kernel gives the 
same solution than the OCSVM (Tax & Duin 2004). 
 
For imbalanced datasets, datasets for which the classification categories are not approximately equally 
represented, the Synthetic Minority Over-Sampling Technique (SMOTE) can be applied (Chawla et al., 
2002). Often real-world data sets are predominately composed of “normal” examples with only a small 
percentage of “abnormal” or “interesting” examples. Under-sampling of the majority (normal) class has 
been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This 
study shows that a combination of over-sampling the minority class and under-sampling the majority 
class can achieve better classifier performance than only under-sampling the majority class. It uses a bias 
to select more samples from one class than from another. This method can be used, for instance, to 
improve the minor classes accuracy in classification.  
 

2.2 Optical image compositing 

A challenge for large scale mapping is to achieve spatial continuity and consistency in the final map. 
There are two main sources of spatial inconsistencies: heterogeneity in the imagery (different orbits, 
acquisition dates, cloud/shadow contamination) and within-class spectral variability due to changes in 
environmental conditions, management decisions and practices (Waldner et al., 2017). To deal with the 
heterogeneity in the imagery, temporal synthesis of daily optical satellite observation has been applied 
for years to produce complete, cloud-free images over large areas and to reduce residual cloud 
contamination. These syntheses are also useful as they can be provided at the same date every year and 
do not depend on a cloud-free acquisition date. Compositing thus plays an important role in global and 
regional vegetation monitoring, land cover change analysis, and land cover mapping activities 
(Vancustem et al., 2009).  
 
In addition, compositing enables a data volume reduction compared to the level 2A products, especially 
for moderate resolution near-daily coverage sensor data such as AVHRR, MODIS or SPOT-VEGETATION. 
Compositing of higher spatial but lower temporal resolution satellite data, such as Landsat, is not 
normally undertaken however because of high data costs and because the land surface state may change 
in the period required to sense several acquisitions (Hansen et al., 2008). With the five days revisit cycle 
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of Sentinel-2 A/B, it is worth testing capabilities of classical compositing techniques on this high 
resolution sensor. Despite the lower revisiting frequency compared to medium resolution instruments, a 
better cloud screening is expected thanks to higher spatial resolution and to the large diversity of 
spectral bands including the 1.38 µm band able to detect thin cirrus cloud (Hagolle et al., 2015). 
Directional effects are also largely reduced with Sentinel-2 thanks to the limited viewing angle of the 
acquisitions.   
 
Various algorithms have been developed to produce a cloud-free synthesis from optical time series. Each 
compositing method corrects for angular effects and atmospheric variations differently. Two main 
categories of compositing are detailed in the following sections: time interval algorithms and feature-
based algorithms. 
 

2.2.1 Time interval algorithms 

Traditional mapping efforts based on multi-spectral time series are preceded by compositing of spectral 
bands with image recorded within a relatively short time period.  
 
The most popular compositing algorithm is the Maximum Value Composite (MVC) applied on Normalized 
Difference Vegetation Index (NDVI) (Holben, 1986). It was firstly created to produce continuous cloud-
free images over large areas with Advanced Very High Resolution Radiometer (AVHRR) data to monitor 
green vegetation dynamics. On a pixel-by-pixel basis, each NDVI value of the compositing period is 
examined, and only the highest value is retained for each pixel location. The main advantage of this 
method is to select the date the most likely to be cloud-free among the list of available dates in the 
compositing period. Indeed, the selection of the maximum NDVI values minimizes clouds, aerosols and 
water-vapor effects, as well as bidirectional reflectance distribution function (BRDF) effects. In addition, 
this method does not require heavy computing resources. However, the composited reflectance bands 
may exhibit substantial radiometric variations, since composite radiances are generally recorded under 
varying atmospheric and geometric conditions (Cihlar et al., 1997). Particularly, the sensitivity of the 
NDVI to the sun-target-sensor geometry results in a biased selection of more off-nadir views in the 
forward scattering direction.  
 
In order to select the best pixel values from the available observation set, various alternative criteria 
have been proposed and assessed, such as the minimum red value (D’Iorio et al., 1991; de Wasseige et 
al., 2000; Cabral et al., 2003), the minimum View Zenith Angle (VZA) (Cihlar et al., 1994a), the maximum 
Normalized Difference Water Index (NDWI) (Gao, 1996), the minimum Short Wave Infrared value (SWIR) 
(Stibig et al., 2001) used to map land cover in cloudy areas, and the third lowest value of an albedo-like 
index (Cabral et al., 2003). Some of these criteria reduce the artifacts observed on the MVC composites. 
However, the selection of a single extreme value, i.e. minimum or maximum, often favours specific 
atmospheric and geometric conditions, which may cause serious spatial inconsistencies in the 
composites and in the subsequent processing (Vancutsem et al., 2007a). Moreover, these single value 
selection criteria use a small part of the available information, even when several observations can be 
considered as cloud-free. 
 
To avoid the drawback of the best pixel composites, for which the best pixel according to several criteria 
is selected among the available dates, average syntheses were explored. In these methods, the 
reflectance value is the average of surface reflectance of cloud-free pixels. The idea is to rely on the 
repetitivity of observations to statistically reduce errors that could happen due to undetected clouds or 
cloud shadows or atmospheric correction errors. Some algorithms such as the Best Index Slope 
Extraction (BISE) (Viovy et al., 1992) and the Average (AVG) (Qi and Kerr, 1995) make a better use of all 
the cloud free pixels. The BISE method greatly reduces the noise in time series and retains more cloud-
free observation than MVC. However, the BISE algorithm requires additional information about the 
vegetation growth. From a statistical point of view, the AVG algorithm seems to be a more robust 
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approach as it reduces the variability of the signal by averaging the highest 10% of the NDVI values 
within each compositing period. Nevertheless, the study achieved by Qi and Kerr (1995) could not 
conclude to any significant improvements compared to the MVC NDVI algorithm. The reason could be 
the low number of observations selected over some periods, i.e. one or two, because of poor 
atmospheric conditions, and a very restrictive threshold used in this study. 
 
A more advanced approach to cope with the variability of the sun-target-sensor geometry of high 
temporal resolution sensors consists of normalizing the bidirectional reflectance by fitting a BRDF model 
to the available cloud-free observations. The reflectances are then standardized to the nadir view 
direction and to a specific solar zenith angle considered as representative for the observations. Some 
algorithms based on inversion of BRDF models have been developed for particular sensors; e.g. the bi-
directional compositing (BDC) algorithm applied to SPOT-VEGETATION time series (Duchemin and 
Maisongrande, 2002). They lead to a great improvement with regards to previous compositing 
algorithms. Their operational implementation faces however some issues, i.e. the number of cloud-free 
observations required for the model adjustment. 
 
To deal with the compositing issues of the best pixel composites that favour specific atmospheric and 
geometric conditions or BRDF normalization that faces implementation issues, a statistically sound 
alternative strategy called Mean Compositing (MC) (Vancutsem et al. 2007) has been proposed and 
tested successfully. The MC method treats all cloud-free reflectance values as estimates of the signal, 
and any remaining variability after cloud removal as an unpredictable noise. It consists of averaging all 
valid reflectance values for each pixel and each spectral band acquired during the chosen compositing 
period. Such an approach used under certain conditions reduces the variability induced by the directional 
effects and the possible remaining atmospheric perturbations after data pre-processing and cloud 
removal, to produce robust and consistent compositing output. The MC algorithm need to fulfill three 
conditions to be relevant from a statistical point of view: (i) an efficient quality control procedure able to 
discard any odd value, (ii) an accurate geometric correction, and (iii) a compositing period which is a 
multiple of the view zenith angle (VZA) cycle of the instrument.  
 
This method was compared with three existing techniques (NDVI, MVC, AVG, BDC) (Vancutsem et al., 
2007a). The results showed that the proposed strategy combined with an efficient quality control 
produces images with greater spatial consistency than currently available VEGETATION products but 
produces slightly more uneven time series than the most advanced compositing algorithm. Its 
performances were also assessed on Medium Resolution Imaging Spectrometer (MERIS) images in 
Vancustem et al. (2007b) against two other compositing methods: BISE and Cyclope (CYC) (Hagolle et al., 
2004) which improves the BDC method. The optimal method was selected thanks to a qualitative 
examination of the temporal profiles, and a quantitative analysis of the noise introduced into composite 
images of the reflectance time series. The BISE algorithm is less effective in reducing time series noise 
than the MC and the CYC. Moreover, this method requires complementary information on the 
phenology of the region. MC and CYC provide very similar results. Owing to its performance and 
simplicity, the MC method was selected to process global MERIS time series.  
 
Also using all cloud-free reflectance values acquired during the compositing period, the Weighted 
Average Compositing (WAC) (Hagolle et al., 2015) may be used to favour dates with low aerosol content, 
low cloudiness and pixels far from clouds. In order to enhance the fidelity to the central date, and to 
reduce artifacts due to undetected clouds or shadows, it gives more weight to the images closer to the 
middle of the compositing period, to the images with a low aerosol content, and to the pixels far from a 
cloud. However, the weighting must be light enough so that it does not finally select only one date, and 
finally looks like a best pixel method.  
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2.2.2 Feature-based algorithms 

A more recent strategy of compositing to reduce the spectral variability is to derive temporal or spectral-
temporal features from the time series. Compared to the time interval algorithms, feature-based 
algorithms do not present a fixed and regular compositing period. Spectral-temporal features are 
composites of the spectral reflectances measured at a specific stage in the season. They summarize 
events that did not necessarily co-occur in composite images. These composites facilitate the 
discrimination between classes by reducing the within-class heterogeneity. Drawbacks of spectral-
temporal features are related the amount of available cloud-free images and their quality. Dense time 
series are required to be able to extract stable spectral signatures at the key moments in the season. 
Besides, poor cloud/shadow screening results inevitably to noisy features. 
 
The Knowledge-based Compositing (KC) is particularly designed for cropland mapping (Matton et al., 
2015; Waldner et al., 2015; Lambert et al., 2016). It aims to extract relevant spectral and temporal 
features at specific events of the growing season to differentiate the cropland from the other land cover 
types. These features were defined according to generic characteristics of crop growth. Typically, the 
crop development cycle can be characterized by four key elements: (i) the growing of crops on bare soil 
after tillage and sowing; (ii) a higher growing rate than natural vegetation types; (iii) a well-marked peak 
of green vegetation; and (iv) a fast reduction of green vegetation due to harvest and/or senescence. 
Based on this conceptual framework, reflectances and Normalized Difference Vegetation Index (NDVI) 
time-series were analyzed to translate those characteristics into temporal features. Five distinct remote 
sensing stages in the crop cycle could be defined at the pixel scale (Figure 2-1): (i) the maximum value of 
red as bare soil has a high reflectance in the red (Tucker, 1979); (ii) the maximum positive slope of the 
NDVI time series; (iii) the maximum value of NDVI; (iv) the maximum negative slope of the NDVI time 
series; and (v) the minimum value of NDVI. The final spectral-temporal features corresponded to the 
reflectance values observed at these stages. These features are time independent, which allowed to deal 
with the cropland diversity and the agro-climatic gradient across the landscape. This compositing 
method requires an appropriate temporal distribution of observation, which can compensate for the low 
frequency of cloud-free observation for cropland mapping.  
 

 
 

Figure 2-1: Representation of five temporal features of the Knowledge-based Compositing for cropland mapping 

(minimum NDVI, maximum NDVI, increasing slope, decreasing slope and maximum RED) 

 
The KC method was successfully implemented in Matton et al., 2015 for automated annual cropland 
mapping along the season for various globally-distributed agrosystems, using high spatial and temporal 
resolution time series (SPOT-4 take 5 and Landsat-8). The methodology is based on cropland-specific 
temporal features, which are able to cope with the diversity of agricultural systems. Twenty features 
(four spectral bands of the five crop growth characteristics) are too numerous as input for most of the 
classifiers, as this can lead to a performance deterioration. Specific feature combinations were thus 
selected in order to create a relevant set for differentiating croplands from non-cropland. It was found 
that the SWIR band did not provide valuable enough information, and it was discarded. The final features 
were selected as the set of five features providing the best mean overall accuracy (OA) on all of the test 
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sites. This included the red and NIR reflectances from the minimum NDVI stage and the green, red and 
NIR from the maximum NDVI stage. 
 
In a similar study, Waldner et al. (2015) proposes a fully automated cropland classification method that 
complies with the requirements of operational agriculture monitoring. It relies on the knowledge of the 
expected cropland temporal trajectories to determine temporal features to be used in the classification. 
The overarching idea is to combine both the full discrimination potential proposed by the spectral bands 
of a sensor with the synoptic interpretation capabilities of the NDVI. Hence, these features have a 
straightforward interpretation that consistent throughout the globe even if subjected to local variations.  
Cropland maps were generated with a support vector machine classifier trained on knowledge-based 
temporal features derived from SPOT-4 and Landsat-8 time-series and a baseline after a statistical 
cleaning. For large scale mapping, such features offer also a simple and comprehensive framework to 
integrate images from different orbits without losing temporal details. Indeed, as the method operates 
the compositing of the features at the pixel level, it tolerates time-series of different lengths which 
would increase temporal resolution and consequently the feature extraction. 
 
A third example of KC application is the cropland mapping over Sahelian and Sudanian agrosystems with 
PROBA-V time series at 100m (Lambert et al., 2016). The methodology uses the five temporal features 
characterizing crop development throughout the vegetative season to optimize cropland discrimination. 
A feature importance analysis validates the efficiency of using a diversity of temporal features to 
complement them according to the cropland proportion. The maximum in red reflectance and the 
minimum NDVI seem the two most discriminant features in higher crop proportion regions. These 
features refer to the start of the growing period when differences between cropland and natural 
vegetation are high due to land preparation. All temporal metrics seem important in one or another crop 
proportion class without a specific distinction for any one of them. Regardless of the crop proportion 
classes, as expected, the blue band contributes the least in cropland discrimination due to the impacts of 
aerosols and atmospheric scattering. The SWIR band is of higher importance than the NIR band, while 
the red and the SWIR bands are the two most important bands for the classification. 
 
A second way for extracting spectral-temporal features proposes statistical measures from a multi-
temporal stack of good quality satellite observations. The advantage of these metrics is the creation of a 
standard feature space independent of specific time of year or number of input observations (Hansen et 
al., 2016). These characteristics allow generic models to be built and applied to large areas. Metrics 
consist primarily of measures derived from all input observations, for example the mean NDVI of all good 
observations during the study period. Metrics can also be calculated by interval quantile, for example the 
interquartile mean (mean of all observations between the 25th and 75th quartiles). Alternatively, metrics 
can be calculated for an individual band as a function of greenness or thermal rankings. For example, red 
reflectance is low at times of high greenness, and generally high for times of low greenness. A 90–100 
interquantile mean of red reflectance ranked by NDVI typically yields a red reflectance value of <5% for 
forest cover for periods of one year or greater. This method is called in this study the Quantile 
Compositing (QC). 
 
This QC method was applied to the humid tropical forest biome for a Landsat-based forest disturbance 
alert (Hansen et al., 2016). Metrics used consisted of individual ranks, means and regressions of red, near 
infrared, both shortwave infrared bands, as well as ranks of NDVI, near infrared and shortwave infrared 
(2.2 μm) (NBR), and near-infrared and shortwave infrared (1.65 μm) (NDWI). For this study, example 
composite metrics include median of first three good observations and median of last three good 
observations. For the purpose of the forest disturbance alert algorithm, the metrics are used largely as a 
reference in identifying stable forest pixels within the preceding four-year period. 
 
In Waldner et al. (2017), spectral-temporal features from QC are used for national-scale cropland 
mapping of South Africa in the absence of within season ground truth data, based on Landsat time series 
and land cover information. To ensure spatial continuity and consistency in the final map, they reduce 
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the data heterogeneity and spectral variability by deriving spectral-temporal features that capture the 
salient characteristics of crops. Three spectral-temporal features were derived from all exploitable pixels 
in the normalized Landsat time series, that is, pixels not affected by clouds, cloud shadows, adjacent 
clouds and quality flags: (i) the median reflectance value over the three-year time series, (ii) the average 
reflectance of all pixels belonging to the first decile of stacked NDVI values, (iii) the average reflectance 
of all pixels belonging to the last decile of stacked NDVI values. There were thus twelve input features for 
the classification (three temporal features of four spectral bands each). The feature importance analysis 
underlined the importance of the SWIR band for crop classification as already reported by Lambert et al. 
(2016). The importance of the SWIR band ought to be related to a differential leaf water content 
between crops and natural vegetation (Tucker, 1980), especially in irrigated areas as well as to its specific 
links with canopy structure and crop residues. From a temporal perspective, three out of the top five 
spectral-temporal features come from the minimum NDVI which confirms that cropland is most 
separable when the soil is bare or prepared for sowing (Matton et al., 2015; Waldner et al., 2015). 
 
The availability of 10-m satellite data such as Sentinel-1 and Sentinel-2 provides positive perspectives of 
improvement to increase the accuracy of the proposed classification scheme, especially in smallholder 
farming systems where a higher spatial resolution is required (Waldner et al., 2017). A higher density of 
images along the growing season would also allow to move toward annual cropland mapping, thereby 
reducing confusions due to land cover and land use change. The red-edge bands available with Sentinel-2 
could be instrumental to enhance discrimination with grassland and wetland vegetation. 
 

2.3 Time series classification methods 

The following subchapters describe the state-of-the-art of time series classification methods for HRL 
Imperviousness, HRL Forest, HRL Grassland, Agriculture, and new land cover products.  
 

2.3.1 HRL Imperviousness 

Urbanisation is considered as a key driver in global environmental change (Schneider, Friedl and Potere 
2010, Weng et al. 2014, Svirejeva-Hopkins, Schellnhuber and Pomaz 2004) and is accompanied by an 
ongoing consumption of land used for the construction of residential, industrial, and transportation-
related areas. Here, continuing soil sealing, meaning the coverage of the soil surface by an impermeable 
material, leads to irreversible loss of biodiversity, fertile soil and valuable open areas. In this framework, 
it is of importance to map the extent of built-up areas as well as to derive more detailed information 
about the spatial distribution and density of impervious surface area (ISA). Currently, data representing 
the urban extent at global scale has been published, in particular the Global Human Settlement Layer 
(GHSL) and the Global Urban Footprint (GUF) (Pesaresi et al. 2013, Esch et al. 2017). However, besides 
providing spatial data on the location of built-up areas, the integration of spatial data on the density of 
ISA is valuable for a variety of applications, such as environmental monitoring, urban climate modelling, 
estimation of rainfall runoff in hydrological models, analysis of urban distribution and expansion as well 
as for population modelling (Yuan and Bauer 2007, Liu et al. 2015a, Zhou et al. 2010, Rodríguez, Andrieu 
and Morena 2008, Imhoff et al. 2010, Van de Voorde, Jacquet and Canters 2011). 
 
In this connection, there are studies investigating the derivation of ISA by means of Earth observation 
data. Lu et al. (2013) present methods that are applied in the field of ISA mapping, including pixel-based, 
object-based, sub-pixel-based, spectral mixture analysis-based, regression-based, and threshold-based 
methods. 
 
There are a number of studies which employed the Vegetation-Impervious-Soil (V-I-S) model to estimate 
ISA. This model analyses urban land cover composition and links the three components to spectral 
characteristics of remote sensing imagery (Ridd 2007). Lately, it was applied in the context of ISA 
estimation for a study area in India using Landsat imagery (Sarkar Chaudhuri, Singh and Rai 2017). In this 
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study, single Landsat acquisitions for the years 2001, 2007, and 2014 were used as input. First, an 
exclusion of water surfaces was conducted by means of the Normalized Difference Water Index (NDWI). 
Afterwards, a minimum noise fraction transformation was applied to the calibrated spectral bands to 
determine the dimensionality of the image and to generate the eigenvalues and eigenimages. Based on 
these data, end members corresponding to vegetation, high and low albedo, as well as soil and 
impervious surfaces are identified and used for linear spectral mixing analysis to retrieve ISA.  
 
Considering ISA estimation at larger extents, most of the studies use night-time light data from the 
Defense Meteorological Satellite Program’s Operational Line-scan System (DMSP-OLS) in combination 
with multispectral imagery from the moderate resolution imaging spectroradiometer (MODIS) data. In 
this context, Guo, Lu and Kuang (2017) presented a new index called Normalized Impervious Surface 
Index (NISI), which is based on the combination of DMSP-OLS and MODIS NDVI data to overcome known 
issues of night-time light data, such as saturation and blooming effects. Here, a maximum value 
composite was used for MODIS NDVI data including spectral information from 247 scenes. The study 
area includes several cities in China. At first, a training dataset is generated using Landsat-8 data, where a 
simple masking and clustering approach is performed to retrieve an ISA map. This ISA map is then 
resampled to a spatial resolution of 250 m to meet the spatial resolution of MODIS data. Next, the 
features NISI, Human Settlement Index (HSI), and Vegetation Adjusted Night-time Light Urban Index 
(VANUI) are calculated. For ISA estimation a support vector regression model is employed using the 
Landsat-based training data and the calculated indices. Furthermore, Elvidge et al. (2007) computed an 
ISA map at global scale. To this end, they used Landsat-based ISA estimations to calibrate a linear 
regression model. As input to regression DMSP-OLS night-time light data were used together with 
LandScan population data. The resulting data was the first global ISA map at a spatial resolution of 1 km. 
Moreover, Liu et al. (2015b) proposed a new index called Normalized Urban Areas Composite Index 
(NUACI). This index is calculated using DMSP-OLS night-time light data along with MODIS Enhanced 
Vegetation Index (EVI) as well as MODIS NDWI data and is designed to overcome the limitations of night-
time light data. In this study, the MODIS 16-day composite was used for a period of one year to generate 
a maximum value composite for the EVI index. Comparable to other studies, a regression model was 
then applied to predict ISA for selected study areas.  
 
Further studies derived ISA by means of spectral mixture analysis and the application of regression 
models using multispectral imagery at local to regional scale (Bauer, Loffelholz and Wilson 2007, Esch et 
al. 2009, Kaspersen, Fensholt and Drews 2015, Braun 2004). Bauer et al. (2007) used single acquisition 
Landsat images for the years 1990 and 2000 covering a study area in the United States. Training areas 
were manually digitised and an orthophoto at a spatial resolution of 1 m was used to determine ISA for 
the selected sites. Next, a tasselled cap transformation was applied on Landsat images and the greenness 
values were used as input for the regression model. A land cover classification was used to limit the 
region of interest to built-up areas. In a further study, ISA was modelled for a number of states in 
Germany using optical Landsat imagery. Here, an infrared aerial image at a spatial resolution of 40 cm 
was used for training and validation. To this aim, impervious surfaces were classified using a threshold-
based approach and in a following step reference data (vector format) including land cover information 
were used to minimise classification errors. The derived impervious surface data at 40 cm resolution was 
aggregated to a grid size of 30 m (corresponding to the resolution of Landsat) to obtain an ISA map. This 
map was then employed to calibrate a support vector regression model. Afterwards, the calibrated 
model was applied on Landsat NDVI to retrieve ISA for the entire region of interest (Esch et al. 2009). 
Kaspersen et al. (2015) studied the usability of Landsat-based vegetation indices to estimate ISA for 
selected European cities. In particular, NDVI, Soil Adjusted Vegetation Index (SAVI) and fractional 
vegetation cover (FR) were used. Regression analyses were performed to predict ISA followed by an 
inverse calibration, using slope and intercept of predicted and observed (based on high resolution 
imagery) ISA, to minimise overestimation. Another study integrated a larger feature space including a 
vegetation index, all spectral bands, phenological information, and texture features to estimate ISA for 
study sites in the United States and China (Liu, Luo and Yao 2017). At this, the spectral bands are 
included from Landsat sensors, phenological features are extracted from combinational use of Landsat 
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and MODIS data, and texture features obtained from gray level co-occurrence matrix approach are based 
on Landsat bands. Afterwards, feature selection, using the variable importance tool of the random 
forests algorithm is applied on the feature space to obtain a subset of features providing the highest 
discrimination. Then a subpixel mapping was conducted using a high resolution ISA map as training to 
model an ISA map. Moreover, Tsutsumida et al. (2016) monitored ISA development over 13 years for the 
study area of Jakarta (Indonesia) using MODIS EVI data. Training data was extracted from very high 
resolution images at Google Earth. For classification purposes, a sub-pixel random forests algorithm was 
applied. The results include annual ISA maps. 
 

2.3.2 HRL Forest 

In the following subchapters, first the state of the art, gives a general overview of the currently available 
forest maps on regional to global scales. Afterwards, the production of the HRL Forest is described, 
including the product definitions and methodology. 

2.3.2.1 Forest state of the art 

The estimation of forest gain/loss is of great interest under different aspects (e.g. forest policy, nature 
protection, climate change, REDD) as the impacts are quite extensive. Since it is much more efficient to 
use remote sensing data for the analysis of changes in the forest compared to field studies, there are 
various (research) projects dealing with this subject in different regions and with different data and 
methods. Over the years, much effort has been undertaken to develop and improve new and existing 
techniques, i.e. improved classification approaches considering a general increase in spatial and 
temporal resolution as well as the accuracy assessment of the applied methods (Hansen et al., 2013; 
Kulkarni and Lowe, 2016; Healey et al., 2005; Zhu and Woodcock, 2014; Coppin and Bauer, 1996). 
 
Regarding the methods for classification of forest the methodologies differ from each other. As 
explained in WP 34 [AD08], on a medium to high resolution scale the currently used methods based on 
remotely sensed data can be generally divided into two categories: a mono-temporal (potentially 
followed by post-classification time series analysis) and a multi-temporal approach (pre-classification 
time-series analysis) (Hirschmugl et al., 2017; Mitchell et al., 2017; Miettinen et al., 2014). The mono-
temporal approach in this context describes the classification of each relevant image from the data stack, 
like it has been applied in the production of the HRL Forest 2015, followed by integrating various 
classifications applying a rule-based approach. 
 
Multi-temporal approaches include specific analyses before the classification is carried out. The Best 
Available Pixel (BPA) approach for example comprises a per-pixel evaluation of certain parameters, 
which is applied to a stack of EO data. In a next step the resulting composite can be classified. Another 
multi-temporal way to prepare the EO data for the classification is the per-pixel derivation of specific 
metrics. In a first step an index like the NDVI for example is calculated for a certain amount of EO data. 
Afterwards, statistics of the data stack are calculated on a per-pixel level, e.g. mean, minimum, or 
maximum, which results in the final composite that the classification is based on. Multi-temporal 
approaches have been applied for forest classification by various authors (Enßle et al., 2016; Hansen et 
al., 2013; Kempeneers et al., 2011; Zhu, 2017). The described approach is also applied in the ECoLaSS 
prototypic mapping and the HRL 2018 FOR production. 
 
Until recently, most of the forest mapping products are based on optical Landsat data (e.g. Hansen et al., 
2013; Potapov et al., 2015; Potapov et al., 2008; Cohen et al. 2002; Zhu and Woodcock, 2014; Healey et 
al., 2005). On a global scale, Hansen et al. (2013) developed a forest map using Landsat 4, 5, 7, and 8, 
showing the canopy cover percentage. In their study, all global land was included, except for Antarctica 
and some Arctic islands. Trees were defined as all vegetation taller than 5m. To derive the canopy 
density percentage several deployed per-band metrics (reflectance values, mean reflectance values, and 
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the slope of linear regression of band-reflectance values versus image date) were analyzed per band 
(Hansen et al., 2013). 
 
Another global mapping product showing the forest cover is the Global PALSAR-2/PALSAR/JERS-1 
Forest/Non-Forest map at a spatial resolution of 25 m, based on SAR data and published by the Japan 
Aerospace Exploration Agency (JAXA). This binary map is based on the Global PALSAR-2/PALSAR/JERS-1 
mosaic, which is composed of PALSAR/PALSAR-2-data. The per-pixel classification is based on the 
backscattering coefficients which are used to detect forests (Shimada et al., 2014).  
 
On May 2019, DLR released a Global Forest/Non-Forest Map at a spatial resolution of 50 m derived from 
TanDEM-X bistatic in-terferometric synthetic aperture radar (InSAR) data, optimizing algorithms for 
different types of forest based on tree height, density and structure (Martone et al., 2018). For the 
derivation of the final forest mask, a number of predictors are combined, such as the calibrated 
amplitude, height information and bistatic coherence, i.e. the degree of decorrelation due to multiple 
scattering within a canopy volume. This product provides for the first time a homogeneous overview of 
cloud-prone rainforest in South America, South East Asia and Africa.  
 
On pan-European scale, the Joint Research Center (JRC) published a forest cover map for the year 2006 
with a spatial resolution of 25m. It is based on the data fusion and classification approach by 
Kempeneers et al. (2011), which works in two steps: first, the selected EO Data (in this case IRS-P6, Spot-
4, and Spot-5 data with a spatial resolution of 25m) are classified into a generalized Land Cover (LC) map. 
For the classification, training data based on the CORINE Land Cover (CLC) map (1990-2006) are used. In 
a second step, the generalized LC map is combined with a multi-temporal composite of coarse resolution 
MODIS data (250m) and thereby refined, so that the former classes now have several subclasses. By 
using this method, it is possible to keep the high spatial resolution of the EO Data although data with 
coarser resolution are used to refine the product (Kempeneers et al., 2011). 
 
A land cover map on pan-European scale at 10m spatial resolution and based on Sentinel-2 has been 
recently produced in framework of Sentinel-2 Global Land Cover (S2GLC) project 
(http://s2glc.cbk.waw.pl/) as part of ESA’s Scientific Exploitation of Operational Missions (SEOM) 
element. The land cover map with reference year 2017 provides up to 13 land cover classes (including 
broadleaf tree cover and coniferous tree cover) and uses CORINE Land Cover 2012 and the High 
Resolution Layers 2015 as input training data. The pixel-based map has been produced fully automatic in 
a C-DIAS Cloud infrastructure (CREODIAS) with multi-temporal features derived from more than 16,000 
Sentinel-2 scenes using a Random Forest classifier (Lewioski S. et al, 2019). 
 
On a regional scale Potapov et al. (2015) focus on the former Eastern bloc countries and analyzed the 
Landsat archive from 1985-2012. Forest loss is monitored annually whereas forest gain is estimated on a 
decadal scale, due to only marginal changes from year to year. Similar to the global product of Hansen et 
al. (2013), the methodology included a per-pixel quality assessment and the application of metrics 
derived from specific time-spans. The refined and extended methodology led to a significantly higher 
accuracy of the product than the global product (Potapov et al. 2015; Hansen et al. 2013). 
 
In the tropical forests the research effort is also quite high and most of the studies aim at monitoring 
deforestation (e.g. Roy et al. 2002; Foody 2003; Hansen et al. 2008; Miettinen et al. 2014; Achard et al., 
2002; Fuller 2006). Achard et al. (2002) for example created a deforestation map of all tropical countries 
except Mexico by analysing the Landsat archive from 1990 to 2010. The forest cover is derived from the 
satellite data with the help of sampling units (10x10 km size). Afterwards, the land cover is classified into 
five categories regarding their tree cover by a supervised classification (Achard et al., 2002). Another 
project that deals with tropical forest mapping/monitoring and the development of the capabilities of EO 
based land monitoring is the EOMonDis project (https://eomondis.info/). Different multi-temporal 
techniques are used to estimate the forest cover in Cameroon, Malawi, Gabon and Peru: Among them, a 
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multi-temporal classification is applied to create a Land Cover Map based on Landsat 8 and Sentinel-2 
data. Besides, time-features are analysed to monitor forest disturbances (Enßle et al., 2016). 
 
Various approaches for forest mapping and monitoring are existing and used at the moment. A crucial 
factor which is influencing the forest mapping is not only to be found on technical side, but also in the 
definition of a forest itself. The ambiguity of classification systems with differences in the 
conceptualization of forest around the world has been emphasized by Comber et al. (2005), just by 
taking the two physical characteristics tree height and crown canopy cover as a minimum requirement 
into account (see Figure 2-2). The legend definition is in truth a key element to be taken into account 
when comparing different land cover products. Even when addressing the same theme (e.g. forest), 
nomenclature, specifications and data models are associated to the specific purpose of the 
corresponding products and may vary significantly. This makes a direct comparison of specific forest/land 
cover maps challenging.  
 

 

Figure 2-2: Ambiguity of forest classification systems: Canopy cover and tree height as minimum physical 

requirements of a forest. Source: Comber et al. (2005)  

 
One of the most promising aspects for future improvements in the land cover mapping domain is in the 
increasing spatial and temporal resolution of EO data. Nearly all of the currently applied methods refer 
to high and medium resolution data. Currently available products based on Landsat for example have a 
spatial resolution of 25 m maximum. The HRL Forest 2015 (based on Sentinel-2) has been produced with 
20m resolution, but the upcoming HRL Forest 2018 is to be produced in 10 m resolution. Therefore, the 
goal is to improve and further develop the existing approaches as well as the development of new ones 
for the higher resolution in order to fully exploit the additional information. Furthermore, a high 
temporal resolution is quite important to develop classification products with maximum accuracy 
(Mitchell et al., 2017; Hansen et al., 2013). On behalf of data availability, it can be stated that the 
situation has now reached a quite good standard. Besides the Landsat archive, the growing stack of 
Sentinel data in context of the Copernicus programme contributes to a broad range of medium to high 
resolution data which is constantly expanded. The challenge now is to set-up suitable processing chains 
and infrastructure environments to handle the ever-growing volume of EO mass data in an efficient 
manner. In this context, processing costs (storage costs & processing costs) will play a major role within 
operational land cover mapping activities from continental to global scale. 
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Actually, in ECoLaSS the Forest prototypes production has proved the feasibility of accurate tree cover 
mapping based on Sentinel time series. The three Forest demonstration sites cover different 
biogeographic regions (i.e., North, Central and South-East), where the diversity of data availability and 
forest types is addressed, as will be explained in chapter 3. The production of accurate tree cover masks 
is key to approach in turn change detection and the incremental updates of High Resolution Layers in 
forest monitoring assessments [AD08, AD09].  
 

2.3.2.2 HRL Forest production 

This subsection is dedicated to HRL Forest production specifically because of the relevance of the topic in 
the context of ECoLaSS, aimed at improving and producing new products for the Copernicus portfolio. 
The HRL Forest represents one out of five thematic layers of the Pan-European component coordinated 
by the EEA and is part of the Copernicus Land Monitoring Service (CLMS). It aims at mapping the status 
of tree-covered areas and its associated dominant leaf type at pan-European scale (EEA-39 member 
states) and in 20 m spatial resolution using optical Earth Observation (EO) data for certain reference 
years in a 3-years update cycle. From 2018 onwards, the HRL Forest will provide status information in 10 
m spatial resolution using a combined optical and SAR classification approach 
 
The HRL Forest has been firstly produced in the frame of the GMES Initial Operations (GIO) phase 2011-
2014 for the reference year 2012 (± 1 year) in 5 geographically splitted lots by different implementing 
European consortia, and with an involvement of EEA member states in a dedicated verification and 
enhancement phase. HRL Forest products 2012 have been produced based on mono-temporal High 
Resolution (HR) EO data coverages (HR_IMAGE_2012 with two pan-European coverages) provided by the 
ESA Data Warehouse (DWH), and in national projections. Additional EO data from other sources (e.g. 
Landsat 8 USGS) has been approved for gap-filling purposes only. Finally, national products have been re-
projected and mosaicked to European lot-mosaics to serve two different service elements (service 
element 1 for EEA and service element 2 for JRC) with different specifications. This overall concept, 
together with considerable constraints of the data situation at that time (including a compounding 
access to national in-situ data), has led to significant differences in the product’s specific patterns and 
thematic quality between the geographical lots. Due to several timely delays from production side and 
involvement of member states, the overall production time of the HRL Forest 2012 exceeded the 
contractually specified 3 years considerably. 
 
The second implementation of the HRL Forest for the reference year 2015 (± 1 year) strongly benefitted 
from the lessons learned of the previous GIO phase, but also made considerably higher requirements 
regards thematic accuracy and production time. The most important changes compared to 2012 were: 

 production fully in European projection  

 no split in geographical lots and service elements 

 no country involvement through a separate verification and enhancement phase 

 a generally increased product portfolio with additional change products, and corrected 2012 
products to allow a full harmonisation across Europe 

 a simpler workflow, implemented by an EIONET “production portal” 

 an envisaged production time of 12 months (compared to 36 months in 2012) 

However, the most noticeable change has been achieved by a drastically increased EO data situation. 
With the successful launch and operation of Sentinel-2A in 2015, the Copernicus community has got 
access to dense time-series data in an unprecedented detail and manner for the very first time. Together 
with the possibility to integrate freely available Landsat data for certain reference years, a completely 
new basis has been made available. Even the latest HR IMAGE dataset from ESA (HR_IMAGE_2015), 
representing one of the input datasets for the HRLs, has undergone a positive evolution with revised 
acquisition windows and a restriction to two primary satellites (ResourceSat-2 and SPOT-5), sharing 
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almost the same radiometric characteristics. The HRL Forest 2015 has been almost produced in the 
specified timeframe and with an overall high quality. 
 
These points paved the way from mono-temporal analysis and a single scene classification to multi-
temporal analyses and time series classifications. Additionally, an improved access to national in-situ 
data and ancillary datasets could be ensured through the Copernicus Reference Data Access (CORDA), 
further contributing to the production of consistent and harmonised HR Forest layers. 
 
The ongoing implementation of the HRL Forest with reference year 2018 at 10 m spatial resolution 
strongly benefits from a further increased data situation thanks to the availability of Sentinel-2B and the 
efforts of the Copernicus In-situ component. In addition, and thanks to the findings from ECoLaSS, the 
integration of Sentinel-1 SAR data is foreseen in cloud-prone regions. Thus, production will fully rely on 
Sentinel time series data. 
 

2.3.2.2.1 HRL Forest Product Definitions 

In the following, a brief overview on the HRL Forest product definitions will be given. A detailed HRL 
Forest 2015 Product Specifications Document is available for download at the CLMS website under 
https://land.copernicus.eu/user-corner/technical-library/hrl-forest. Specifications of the upcoming HRL 
Forest 2018 products at 10 m spatial resolution will be added to the technical library as soon as the HRL 
products are published. However, specifications of the two 10m primary status layers Dominant Leaf 
Type and Tree Cover Density are identical to the ones used in ECoLaSS. 
 
Table 2-1 provides an overview of the Land Cover (LC) and Land Use (LU) features to be 
included/excluded in the tree cover mapping (if detectable from the 20/10 m input satellite data), 
resulting in a binary Tree Cover Mask (TCM). The derived TCM represents the baseline for the two 20/10 
m primary status layers Tree Cover Density (TCD) and Dominant Leaf Type (DLT). The mask is 
subsequently filled with the relevant leaf type information (broadleaved/coniferous) and tree cover 
density values. Both pixel-based layers represent the primary products from which all other layers 
(including change products) will be derived. Both layers are sharing the same spatial extent and provide 
information on the leaf type (broadleaved /coniferous) and the proportional tree cover at pixel level. 
This allows users to apply a (national) forest definition, taking any canopy crown cover into account, 
which fits best to their specific needs. 
  

https://land.copernicus.eu/user-corner/technical-library/hrl-forest
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Table 2-1: LC/LU features to be included/excluded from the tree cover mask 

Included Features  

(if detectable from the 20/10 m imagery) 

Excluded Features  

(if detectable from the 20/10 m imagery) 

 Evergreen/deciduous broadleaved, 
sclerophyllous and coniferous trees of any use  

 Forests (grown-up and under development) 

 Orchards, olive groves, fruit and other tree 
plantations, agro-forestry areas 

 Transitional woodland, forests in regeneration 

 Groups of trees within urban areas (alleys, 
wooded parks and gardens) 

 Forest management/use features inside forests 
(forest roads, firebreaks, thinnings, forest 
nurseries, etc.) - if tree cover can be detected 
from the 20m imagery 

 Forest damage features inside forests (partially 
burnt areas, storm damages, insect-infested 
damages, etc.) - if tree cover can be detected 
from the 20m imagery 

 Open areas within forests (roads, permanently 
open vegetated areas, clear cuts, fully burnt 
areas, other severe forest damage areas, etc.) 

 Dwarf shrub-covered areas, such as moors and 
heathland 

 Vineyards 

 Dwarf pine / green alder in alpine areas 

 Mediterranean shrublands (macchia, garrigue 
etc.) 

 Shrubland 

 

TREE COVER DENSITY 

The Copernicus HRL Forest defines Tree Cover Density as the „vertical projection of tree crowns to a 
horizontal earth’s surface“ and provides information on the proportional crown coverage per pixel. It is 
assessed by means of Very High Resolution (VHR) satellite data and/or aerial ortho-imagery and shows a 
natural sensitivity towards phenology and radiometric influences (e.g. haze). The Tree Cover Density 
represents a primary status layer and has the following main specifications: 

 20/10 m spatial resolution 

 Tree Cover Density range of 0-100% 

 No Minimum Mapping Unit (MMU); pixel-based 

 Minimum Mapping Width (MMW) of 20/10m 

DOMINANT LEAF TYPE 

The Dominant Leaf Type is another primary status layer of the HRL Forest, derived from multi-temporal 
satellite image data and has the following main specifications: 

 20/10 m spatial resolution 

 Fully identical in its outline extent with the Tree Cover Density product 

 Providing information on the dominant leaf type: broadleaved or coniferous 

 No Minimum Mapping Unit (MMU); pixel-based 

 Minimum Mapping Width (MMW) of 20/10 m 
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FOREST TYPE 

The Forest Type is produced by applying a minimum „Forest“ definition, largely following the forest 
definition of the Food and Agriculture Organization (FAO), accessible under 
www.fao.org/docrep/006/ad665e/ad665e06.htm. 
 
Tree cover in traditional agroforestry systems such as Dehesa/Montado is explicitly included for EEA 
purposes. The product is derived through a spatial intersection of the two primary status layers Tree 
Cover Density and Dominant Leaf Type and has the following main specifications: 

 20/10 m spatial resolution 

 Tree Cover Density range of ≥10-100% 

 Minimum Mapping Unit (MMU) of 0.52/0.5 ha (13/50 pixels); applicable both for tree-covered 

areas and for non-tree-covered areas in a 4x4 pixel connectivity mode, but not for the distinction 

of dominant leaf type within the tree-covered area for which no such minimum is set. 

 Minimum Mapping Width (MMW) of 20/10 m 

 

2.3.2.2.2 Methodology 

HRL FOREST 2012 

In 2012, HRL Forest products have been produced in five geographically split lots by four different 
consortia, using different methodologies in terms of pre-processing, classification and post-processing. 
Since the methodologies applied are partially unknown to the ECoLaSS consortium, this cannot not be 
discussed in any further detail here. However, data basis was a mono-temporal pan-European coverage 
from the HR_IMAGE_2012 dataset, which has shown a series of shortcomings (5 different sensors, 
acquisitions outside the vegetation period, high cloud/haze cover, data gaps) related to the HRL 
production. Even though a streamlining phase has been conducted in order to harmonize the output 
results between the lots, the combination of the points mentioned above led to different results in 
quality across Europe. In consequence, this led to a partial correction of 2012 status layers in frame of 
the HRL Forest 2015 production.  

HRL FOREST 2015 

In 2015, a fundamental change in the overall methodology (see above) as well as in the overall data 
availability (and quality) has been taken place. Besides a consistent and standardized pre-processing 
(geometric correction, Top-of-Atmosphere correction, topographic normalization) of the satellite data, 
the selection process of suitable data (EO data, ancillary data) formed a fundamental step in the 
production process. According to specific selection criteria (i.e. cloud/haze cover, acquisition dates) the 
best available satellite scenes have been selected and subsequently processed. Since Sentinel-2A 
represented the main input data source, the Military Grid Reference System (MGRS) has been defined as 
production unit system. The HRL Forest 2015 used a multi-temporal and multi-sensor approach for 
creation of the TCM and DLT.  

 Multi-temporal in this context means a time series of classifications using EO data of the 
specified reference year 2015 +/-1 year. However, the largest part of satellite data is from 2016 
(~82%).  

 Multi-sensor implies the use of several optical sensors in order to fill data gaps and to increase 
the number of data coverages per MGRS tile, namely Sentinel-2A, Landsat 8 OLI, ResourceSat-2 
and SPOT-5. 

On average, about 18 multi-temporal scene coverages (Sentinel-2A, Landsat 8, see Figure 2-3) have been 
used for the per-pixel analysis per MGRS tile. An initial land cover classification has been performed for 
each MGRS tile using Support Vector Machines (SVM). Subsequently, a rule-based approach has been 

http://www.fao.org/docrep/006/ad665e/ad665e06.htm
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applied to generate the dominant leaf type and a pre-final TCM. The latter one has undergone several 
revisions, including manual enhancement steps and plausibility analyses using existing Copernicus data 
(CLC 2012 and other thematic HRLs). 

 

 

Figure 2-3: Number of Scenes for HRL Forest Tree Cover and Dominant Leaf Type Mapping 2015. 

 
Contrary to the DLT 2015, the status of the TCD 2015 has been derived by classifying nearly 1,000 single 
satellite images (Sentinel-2, Landsat 8, ResourceSat-2, SPOT-5) from the 2015 reference year (± 1 year) 
on a mono-temporal basis, but within the confines of the multi-temporally derived Tree Cover Mask. 
Tree Cover density values have been calculated using a multiple linear regression estimator, fed by more 
than 150,000 automatically collected reference samples. In order to magnify the accuracy of the TCD 
product, more than 500,000 reference points, which have been interpreted visually based on existing 
VHR_IMAGE_2015 data as well as suitable ortho-imagery and subsequently integrated in the 
classification process. 
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WorldView-2 scene from the VHR_IMAGE_2015 
dataset, acquired on 10.08.2015 

© DigitalGlobe Inc. (2015), all rights reserved. 

Sentinel-2A acquired on 27.08.2016 
modified Copernicus Sentinel data [2016] 

  

 

20m Tree Cover Density 2015 

Courtesy of the European Environment Agency 

 

20m Dominant Leaf Type 2015  

Courtesy of the European Environment Agency 

Figure 2-4: Example of used input data and resulting 20m products for a region in western Poland. a) 

VHR_IMAGE_2015, b) Sentinel-2A, c) TCD 2015, d) DLT 2015. 

 
Figure 2-4 shows the outcome of both, the TCD 2015 (Figure 2-4c) and the DLT 2015 (Figure 2-4d) 
classification based on modified Copernicus Sentinel-2 data (Figure 2-4b). Compared to the 
VHR_IMAGE_2015 (Figure 2-4a) the DLT distinguishes well between broadleaved and coniferous trees. 
The parts of lower and higher density visible in Figure 2-4a are well represented by the TCD in Figure 
2-4c. The pixel-based primary status layers Tree Cover Density and Dominant Leaf Type have been 
validated through a systematic stratified random sampling approach with more than 9,500 Primary 
Sampling Units (PSU) and exceeded an overall thematic accuracy of 90%. 
  

a) b) 

c) d) 
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HRL FOREST 2018 

The HRL Forest 2018 will provide improved status layers at 10m resolution. The whole production is 
being performed by one Service Provider and utilises some of the findings made in ECoLaSS. This relates 
in particular to the use of time features derived from optical Sentinel-2 and Sentinel-1 SAR data for the 
vegetation period. The production scheme is largely considering the distribution of biogeographic 
regions and environmental zones according to Metzger et al. (2005). Processing takes place on the DIAS 
platform Mundi to take advantage of the storage and processing capacities of a powerful cloud 
infrastructure. Test and training data are automatically selected and feed a Random Forest classifier for 
generation of the Tree Cover Mask and the primary status layer Dominant Leaf Type. The primary status 
layer Tree Cover Density benefits from a revision and extension of the already existing Forest Reference 
Database. Change products (Tree Cover Change Mask 2015-2018, Dominant Leaf Type Change 2012-
2015-2018) are being created using a Reference Database for Change Calibration. Validation of the HRL 
Forest 2018 products will be performed with a systematic random sampling grid, consisting of more than 
12,000 PSUs. Results will be published in 2019. 
 

2.3.3 HRL Grassland 

The HRL Grassland chapter contains information about the state of the art, concerning different 
technical approaches for grassland mapping and then focuses specifically on the HRL Grassland 
production. Afterwards, a desk study about the mapping of Mediterranean grassland, elucidates the 
particular challenges in this context. 

2.3.3.1 Grassland state of the art 

In the last decade, remote sensing technologies for the monitoring of diverse vegetation types and 
natural habitats as well as their biodiversity have been significantly advanced (Turner et al., 2003; 
Vanden Borre et al., 2011; Corbane et al., 2015). The increasing availability of high and very high spatial 
resolution multi-temporal data from multi-spectral and hyperspectral optical satellite sensors (e.g., 
RapidEye, Sentinel-2, the planned EnMAP), as well as from Radar (TerraSAR-X, Radarsat-2, Sentinel-1) 
and Light Detection And Ranging (LiDAR) sensors have boosted this development. Specifically, this 
progressively supports the transition from traditional statistical classification approaches to more 
effective machine learning algorithms (due to the increasing computational capabilities necessary for 
processing big amount of data) and is continuously fostering the development of newer more advanced 
methodologies (Waske and van der Linden, 2008). Still, present habitat mapping programs (e.g., CORINE 
land cover or the NATURA 2000 Annex II habitat maps) mainly account for visual image interpretation or 
field surveys, which are high time and cost demanding, but also strongly depend on knowledge and 
experience of the operator (Mander et al., 2005; Gross et al., 2009; Thoonen et al., 2010). Deriving key 
information for the assessment of biodiversity is highly supported through the mapping of grassland 
species and characterizing related parameters or indices, e.g., primary productivity, climate or habitat 
structure (Turner et al., 2003). In this framework, several methods for the monitoring of grasslands have 
been presented in the literature.  
 
In general, grassland species occur mainly as plant societies with a great variety within each habitat 
(Corbane et al., 2015). However, it is still very challenging to distinguish homogenous habitats (Corbane 
et al., 2015; Hill et al., 2005). Accordingly, the most of current research activities aim at addressing the 
identification, delineation and change detection of habitats (e.g., in terms of areal coverage, field size, 
spatial distribution and management practices) as well as the description of their status and quality. 
However, at present only few studies are tackling this issue by means of remote sensing techniques.  
 
In general, so far only satellite data with low (> 300m, e.g., MODIS) or medium (30 - 300m, e.g. AWiFS) 
spatial resolution have been employed to derive national and continental land-cover maps. However, 
these are not suitable for a proper categorization of grassland habitats, which, to cope with their 

https://mundiwebservices.com/
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generally small extent, ideally requires high (3 to 30 m, e.g. Sentinel-1 & 2, Landsat or SPOT) to very high 
(< 3 m, e.g. TerraSAR-X, WorldView-2, Quickbird) spatial resolution imagery. Moreover, given the 
similarity of different grassland types in their physical appearance, high frequency acquisitions over the 
growing season are essential for characterizing their temporal behavior, which, instead, may consistently 
vary e.g., due to their use associated with different mowing practices (Schlager et al., 2013; Franke et al., 
2012; Zillmann et al., 2014; Lucas et al., 2007).  
 

2.3.3.1.1 Grassland monitoring by means of optical data 

Pixel based approaches based on optical data 

As optical remote sensing data with a high spatial as well as temporal resolution covering large 
geographical areas have only become available in the last 10 - 15 years (e.g., IRS-P6 (23.5m), RapdiEye 
(6.5m), and Sentinel-2 (10-60m)), various previous studies addressing grassland monitoring solely applied 
low spatial resolution satellite data for large area analyses, e.g. the NOAA-AVHRR or MODIS used to 
discriminate grasslands as a whole from other land-cover types (Hill et al., 1999; Wang et al., 2013), to 
estimate the aboveground biomass of grassland during the growing season (Zhao et al., 2014; Yu et al., 
2010), to analyse grassland potential productivity dynamics and their carbon stocks (Li et al., 2013), to 
evaluate land degradation (Tasumi et al., 2014; Numata et al., 2007), or to determine grassland drought 
(Gu et al., 2007; Wan et al., 2004).  
 
In contrast, medium resolution data such as the Landsat Thematic Mapper (TM) (Jensen et al. (2001), 
Wood et al. (2012), Price et al. (2002b)), the Landsat-7 Enhanced Thematic Mapper (ETM+) (Sánchez-
Hernández et al. (2007), Lucas et al. (2007)) or the Advanced Wide Field Sensor (AWiFS) on board the 
IRS-P6 satellite have been employed more recently in a variety of studies to classify different grassland 
types and habitats (Jensen et al., 2001; Sánchez-Hernández et al., 2007; Lucas et al., 2007), to determine 
grassland changes (Rufin et al., 2015; Zha & Gao, 2011; Liu et al., 2004), to describe vegetation structure 
and management practises (Wood et al., 2012), or to evaluate grassland degradation (Price et al., 
2002b).  
 
High and very high resolution data sets, e.g., LISS-III on board the IRS-P6 satellite, RapidEye, IKONOS-2, or 
Quickbird, have been used not only to distinguish grasslands from crops (as for a test site in North-East 
Germany (Esch et al. (2014a, 2014b)) or in the context of a pan-European permanent grassland map 
(Zillmann et al. (2014)), but also to classify different grassland habitats. Buck et al. (2013) and Buck et al. 
(2015) integrated expert knowledge in form of raster information layer into the classification approach 
(where they tested the maximum likelihood and SVM classifiers) to map Natura2000 grasslands types, 
intensively used grassland and crops based on three RapidEye scenes. Stenzel et al. (2014) applied a 
Maximum-Entropy (MaxEnt) one-class classification approach (Phillips et al., 2004) on a time series of 
five RapidEye images over a test site in southern Bavaria (Germany), which generated a set of logistic 
probabilities maps that were finally combined creating one grassland map. Schmidt et al., 2014 used 
several RapidEye scenes and different combinations of vegetation indices as input for a SVM 
classification and presenting the best settings to discriminate semi-natural grassland classes. This study 
aimed to assess the most suitable phenological season to get optimized results and the best trade-off 
between the minimum number of individual scenes needed to achieve the best corresponding 
classification accuracy. They concluded that NDVI composites from early summer season are most 
important for such classification tasks. Furthermore, full spring season, late summer and midsummer 
seasons were also found to be important and contributed to a better grassland discrimination. 
Specifically, data from March, May and August were found necessary to discriminate crops and grassland 
for Central Europe (Keil et al. 2013). However, these dates vary for different regions with changing 
climate conditions, different crop cultivations and land management practices (Zillmann et al., 2014). In 
ECoLaSS prototypes implementation, and tests carried out in the different biogeographic regions, it is 
clear that the time windows selection for a correct grassland identification must be within the periods 
when the crops (being the class that generates more frequent confusion with grasslands) show a clearly 
distinctive phenological status with respect to grasslands.  
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Object based approaches based on optical data 

While the above mentioned methods focused on pixel-based approaches, others focused on the 
development of object-based approaches for discriminating grassland and diverse habitats. In particular, 
these are based on predefined objects (e.g., from existing geodata from national topographic maps, or 
segmentation of homogenous regions) and have the great advantage of including additional knowledge 
such as region based spectral and texture features, form features or context information (Bock and 
Lessing, 2000). Amongst others, Bock et al. (2005a) developed and assessed an object-oriented fuzzy-rule 
classification for habitat mapping at the regional scale (based on dual-date Landsat ETM+ scenes from 
2001) and at the local scale (based on high resolution stereo camera (HRSC) scanner data from 2001) 
accounting for information derived from a soil and topographic map. Furthermore, Bock et al. (2005b) 
applied object-based classification for monitoring dry grasslands and wetlands by means of multi-
temporal and multi-resolution EO data both at the regional (in a study site in Schleswig-Holstein, located 
in Northern Germany) and local level (in a study site in Wye Downs (UK)). While for the regional study a 
time series of Landsat TM/ETM+ scenes from the years 1990, 1995, and 2001 has been used, one pan-
sharpened Quickbird image of 2002 has been employed for the local study to develop a hierarchical 
methodology based on fuzzy rules and nearest neighbour classification. Díaz Varela et al. (2008) studied 
the potential of the maximum likelihood classifier and the nearest neighbour decision rule for addressing 
both pixel- and object-based classifications of one Landsat TM image acquired over a test area in the 
Northern Mountains of Galicia (Spain), which is characterised by a heterogeneous landscape, also 
including habitats of the Natura2000 network. Franke et al. (2012) analysed the potential of multi-
temporal RapidEye data for a large-scale assessment of grassland use intensity based on commercial 
decision tree software See5 (RuleQuest Research Pty Ltd, Australia) and using multi-temporal NDVI, 
Normalized Red-Edge Vegetation Index (NREVI), and Mean Absolute Spectral Dynamic (MASD) as input 
parameters. Secondly they tested a context-based classifier. Both approaches were implemented as 
object-based classification systems. Also, Corbane et al. (2013) successfully classified two habitat types 
(i.e., dry improved grasslands and riparian ash woods) using two RapidEye scenes and a DEM for a test 
site located in Foothills of Larzac in the Southern Massif Central (France). This was possible by applying 
an object-oriented sparse partial least square discriminant analysis. Schlager et al. (2013) introduced a 
classification approach specific for discriminating grassland habitats in the biosphere reserve 
Schwäbische Alb (Germany) based on a multi-sensor remote sensing data set consisting of an orthophoto 
composite, 6 RapidEye scenes, and LiDAR data set as well as vector data from the Authorative 
Topographic-Cartographic Information System (ATKIS®) and the Integrated Administration and Control 
System (IACS, German: InVeKoS). Petrou et al. (2014) applied an object- and rule-based classification 
methodology to map Natura 2000 habitats (i.e., two extended coastal lagoons, numerous channels, 
marshes and humid grasslands) in the Le Cesine test site located in the Apulia region in south-eastern 
Italy. The experiments were based on a pre-existing land cover map, two multispectral images from 
Quickbird and WorldView-2 as well as an Object Height Model (OHM) extracted from LiDAR data. 
 

2.3.3.1.2 Grassland monitoring using SAR data 

Similarly to optical imagery, also synthetic aperture radar (SAR) data have been successfully applied in 
several studies for discriminating different crop types (McNairn and Brisco, 2004; Ferrazzoli et al., 1997; 
Blaes and Defourny, 2003; Lopez-Sanchez et al., 2011; Wegmüller and Werner, 1997); however, they 
have been seldom employed for classifying grassland habitats. Furthermore, in such context studies 
accounting for multitemporal series of SAR images are extremely rare. Available data from current and 
past SAR satellite missions are mainly acquired in three frequency ranges: L-band (1-2 GHz; e.g., ALOS/ 
PALSAR, JERS-1), C-band (4-8 GHz; e.g., Radarsat-1 and Radarsat-2, ERS-2/SAR, Envisat/ASAR), and X-
band (8-12 GHz; e.g., TerraSAR-X/Tandem-X, COSMO-SkyMed, PAZ). While C-band and L-band data have 
longer wavelength and can penetrate through vegetation (hence being more suitable for forest 
analyses), X-band data are not penetrative and thus more suitable for short vegetation cover, such as 
grasslands. However, only in recent years the acquisition of high-temporal frequency SAR imagery has 
become possible, thus enabling a variety of new possibilities.  
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Hill et al. (2000) evaluated the applicability of Radarsat-1 C-band single polarisation (HH) data for 
monitoring grasslands in test sites located in Australia and Canada. In particular, they applied a clustering 
followed by a maximum likelihood classifier to different datasets obtained combining the backscattering 
information with texture features. The use of multiple images allowed a consistent improvement with 
respect to using a single one; moreover, the degree and regularity of surface roughness proved to be the 
most informative feature. Smith and Buckley (2011) assessed the suitability of multi-temporal Radarsat-2 
quadpol imagery to classify native and improved grasslands as well as agricultural crops over a test site in 
southern Alberta (Canada). The classification on the Freeman-Durden decomposed data was performed 
by means of the See5 decision tree classifier (RuleQuest Research Pty Ltd, Australia). The results showed 
the potential to separate native grasslands from agricultural areas as well as native from improved 
grasslands and that the incidence angle of the acquisition has no influence on the classification accuracy. 
Schuster et al. (2011) showed that habitat-specific swath rules describing management practices are an 
important parameter in the conservation of semi-natural grasslands and can be used to indirectly map 
specific habitat types. They introduced a method to detect swath events based on a time series of eleven 
TerraSAR-X images (HH polarisation, Stripmap mode) over a nature conservation area west of Berlin 
(Germany) and analysed the temporal profiles of the backscattering coefficient σ0 by applying a rule-
based approach to detect swath events. Results were compared to ground-truth data as well as to 
habitat-specific swath rules defined to conserve Natura 2000 habitats. Furthermore, Schuster et al. 
(2015) analysed the potential of grassland habitat mapping by means of inter-annual time series data 
(2009-2011) of RapidEye and TerraSAR-X data acquired over a 60km² test site in Northern Germany. 
Based on individual sets of five RapidEye and 15 TerraSAR-X scenes, after masking non-grassland areas 
they mapped seven grassland classes with a SVM and were able to achieve overall classification 
accuracies higher than 90%, with Kappa coefficient greater than 0.9. Betbeder et al. (2015) investigated 
the optimal number and key dates for the acquisition of dual-polarisation (HH/VV) TerraSAR-X images to 
classify wetland vegetation formations in a 6.7 km² test site located in the Bay of Mont-Saint-Michel 
(France). The available eight dualpol TerraSAR-X scenes were decomposed using the Shannon Entropy 
(SE) calculation and a SVM classifier with a Gaussian kernel was then used to categorise six classes (of 
which four are wet grassland types) based on training points collected in situ. Five images proved to be 
the best trade-off between the number of acquisitions and the final overall accuracy; moreover the best 
combination was obtained using scenes acquired in February, April, May, June, and July, i.e. when plants 
grow actively and hydrodynamic processes are vibrant. 
 
A variety of approaches jointly apply multi-sensor imagery from SAR and optical satellites for the 
classification of vegetation classes, such as crop types (Brisco and Brown, 1995; Blaes et al., 2005; 
McNairn et al., 2009), and crops combined with more general land-cover classes (Waske and van der 
Linden, 2008, Waske and Benediktsson, 2007), or for the estimation of herbaceous biomass (Svoray and 
Shoshany, 2003). Smith et al. (1995) analysed ERS-1 SAR data together with Landsat TM, SPOT VIR, and 
airborne optical imagery to assess the combination of radar and optical data for monitoring rangeland in 
the Agriculture and Agri-Food Canada Research Substation at Onefour (Alberta) by means of discriminant 
function analysis (DFA). The combination allowed obtaining an improved categorisation of the vegetation 
classes with respect to considering each data type separately; moreover, while optical data proved to be 
more suitable to characterise the vegetation status, SAR imagery provided key information about the 
structure and surface topography. Also Price et al. (2002a) used a classification system based on the DFA 
to study the separability of three tallgrass land management practices in eastern Kansas (USA), where 
usually cool- and warm-season grass species occur, by means of three multi-seasonal Landsat TM and 
four multi-seasonal ERS-2 SAR images, as well as their combination. The results showed that by using 
Landsat TM data alone performances were better than those obtained with ERS-2 imagery and, when 
combined, the SAR data did not allow to increase the classification accuracy. Hill et al. (2005) showed the 
potential of improving the categorization of heterogeneous herbaceous cover in pastures and grasslands 
by combining independent classifications obtained by means of mono-temporal Landsat-5 TM and Jet 
Propulsion Laboratory AirSAR data. Experiments were performed for a test site in the Cervantes area 
(Australia) using an unsupervised version of the Complex Wishart classifier for the C-, L-, and P-band 
polarimetric SAR data as well as a principal component analysis on the green, red and near-infrared 
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Landsat bands followed by a centroid distance measure clustering. In particular, they were able to map 
vegetation types based on the different sensitivity of SAR and multispectral sensors to specific vegetation 
characteristics. Erasmi (2013) assessed the capability of combining optical (six RapidEye scenes) and SAR 
(four Radarsat-2 and six TerraSAR-X scenes) data for the classification of semi-natural habitats over the 
study site Schorfheide Chorin in eastern Germany and compared the results with single sensor 
classifications. The object-based classification was performed by means of a classification and regression 
tree (CART) algorithm. Results showed that single-sensor classifications based on multi-temporal 
RapidEye data outperformed the once carried out with TerraSAR-X and Radarsat-2 data and 
demonstrated that bi-sensor combinations of optical and SAR data resulted in classification accuracies 
between 60.83% and 84.53% (with Radarsat-2 polarimetric data providing higher classification accuracies 
than TerraSAR-X). Metz (2016) proposed a system which proved to be robust and confirmed the 
effectiveness of employing multi-temporal and multi-polarisation VHR SAR data for discriminating 
grassland types. Tamm et al. (2016) aimed to describe the relationship between Sentinel-1 A 12 day 
temporal interferometric coherence and mowing events on grassland. The study area includes 37 fields, 
six of which were in situ monitored on a weekly basis. In total 77 mowing events were observed on all 
test sites combined. Coherence is higher on bare soil than on fields with remaining vegetation and the 
increase in coherence after mowing events is highly dependent on the specific mowing method. 
 

2.3.3.1.3 Time series approaches 

Grasslands are highly dynamic throughout the time and its growing period with changing canopy density, 
chlorophyll status and ground cover and therefore do not have a unique spectral signature which allows 
a simple discrimination from other vegetated land cover classes (Zillmann et al., 2014). Especially 
grasslands and crops show significant variations throughout their growing cycle. Therefore, time series of 
data which mirror the phenological dynamics of grasslands are required. The usage of multi-temporal 
and multi-sensor data led to improved land cover classification especially of vegetated classes as it allows 
the observation of phenological effects. High temporal resolution of input data covering different 
seasons is also required to properly categorize grasslands (Metz 2016). Because of similarity of grassland 
types with other land cover classes as well as physical appearance the data need to cover growing 
seasons with higher temporal resolution to enable detailed characterization of temporal behavior 
differences and use the gained temporal information for better class discrimination and thus grassland 
classification with higher thematic classification accuracy. Analysis of spectral variability metrics allows 
discriminating between different land cover classes especially grass-dominated pastures from woody 
vegetation (Ruffin et al., 2015). Following, we present promising approaches which use dense time-series 
of data and derived metrics to classify different grassland related classes. 
 
Zillmann et al. (2014) investigated an approach based on decision tree classifier C5.0 and optical multi-
temporal imagery to generate a high-resolution pan-European grassland layer. They applied image 
segmentation and calculated seasonal statistics for various vegetation indices. They identified 7 indices 
to be useful for grassland classification especially regarding the discrimination of grassland and crops, 
namely: NDVI, ground cover (GC), Plant Senescence Reflectance Index (PSRI), Normalized Difference 
Infrared Index (NDII), Normalized Difference Senescent Vegetation Index (NDSVI), Wetness Index (WI), 
and Brightness. For each index seasonal statistics were calculated as they describe spatio-temporal 
phenological differences of vegetation and thus, enhance the discrimination between grassland and 
other vegetated land cover typed (especially crops). Yang et al. (2017) investigated a set of vegetation 
indices to detect changes of natural grassland to cultivated crops and the optimal timing of data 
acquisition, namely: Normalized Difference Vegetation Index (NDVI), Red-Green Ratio (RGR), Enhance 
Vegetation Index (EVI), Normalized Difference Infrared Index (NDII), Modified Triangular Vegetation 
Index II (MTV2), Shortwave Infrared Reflectance (SWIR32), and Plant Senescence Reflectance Index 
(PSRI). They verified that all analysed indices were important for distinguishing native grassland and 
cropland. However, the optimal mix was changing with each month during the growing season (Yang et 
al. 2017).  
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Mueller et al. (2015) used Landsat time series to separate cropland, pasture and natural savanna 
vegetation using spectral-temporal variability metrics and random forest classifier. They concluded that 
deep temporal information derived from time series data is the key in a phenologically complex land 
cover system. Wang et al. (2017) used PALSAR mosaic data and Landsat 5/7 data to develop a pixel and 
phenology based mapping algorithm which helped to analyse the encroachment of red cedar into 
grasslands. The introduced approach can be also adopted for the classification of different grassland 
types. Also Cui et al. (2017) used a long time series of NDVI data to analyse the phenology response of 
grassland to draughts using the TIMESAT software (Eklundh and Jönsson, 2015). Lopes et al. (2017) 
discussed an approach using dense time series of satellite data such as Sentinel-2 to formulate the 
Spectro-Temporal Variation Hypothesis assuming that the spectral variability in time can be used as a 
proxy for grassland and different grassland species detection. Liu et al. (2017) utilized time series data of 
MODIS, VIIRS, Landsat sensors to monitor open grassland and oak/grass savanna and discussed the 
influence of spatial resolution. The following phenological metrics were identified to be essential to 
analyse the phenological cycle of open grassland and oak/grass savanna: the timing of the Onset of 
Greenup = the onset of the NDVI increase (OG); the full Maturity of the Green canopy = the onset of the 
maximum NDVI (MG); the commencement of senescence (or End of Greenness) = the onset of the NDVI 
decrease (EG); and full Dormancy of Green vegetation = the onset of the NDVI minimum (DG) (Liu et al. 
2017). McInnes et al. (2015) found that native grasslands can be distinguished from spectrally similar 
tame pastures when using dense time series of NDVI data and generated seasonal profiles of the classes. 
The authors observed that the separation of the two classes was possible due to a different rate of spring 
green up at pixel level. The classification was performed based on simple linear discrimination function. 
Discriminant analysis builds a predictive model for group membership based on natural breaks in the 
data, using analysis of variance (ANOVA) techniques and multiple regressions (McInnes et al. 2015). The 
availability of vegetation index data in the early growing season was found most important for the 
discrimination of grassland and other spectrally similar land cover types. 
 
The accuracy of grassland classification depends on the number of images in the time series, but more 
importantly on the optimal acquisition date and gap free data during the growing season. Many studies 
dealing with grassland detection based on remote sensing data have been using pre-existing land cover 
classifications information to avoid misclassification in areas where grassland can be excluded (Petrou et 
al. 2014). Depending on the assessment of tested approaches, this strategy can be implemented 
additionally to increase the detail and accuracy of the end result. Nevertheless, more research is needed 
on the spatio-temporal variation of the coverage of grass canopy and grass height (Rodríguez-Maturino 
et al., 2017). 
 

2.3.3.2 HRL Grassland production 

The HRL Grassland 2015, comprising natural, semi-natural and managed grasslands of the EEA39 
countries is one of five High Resolution Layers (HRL) on land cover characteristics within the context of 
Copernicus Land Cover Services (notably imperviousness surfaces, forest areas, natural and semi-natural 
grasslands, wetness and water, small woody features), commissioned by the European Environment 
Agencies EEA. It is a binary product with 20 m spatial resolution and a minimum mapping unit of 1 ha 
that aims at providing a synoptic view on the distribution and expansion of the pan-European grasslands. 
 
In answer to the technical constraints of the HRL Natural Grassland (NGR) of the reference year 2012, 
which has not met the common expectations nor the accuracy requirements, the methodology for the 
HRL Grassland product of 2015 was fundamentally reconsidered and comes now with a revolutionized 
approach concerning definition, workflow and technical aspects, as well as an improved data base. At 
present, the HRL 2018 production has been recently started. The concept of the present HRL 2018 
Grassland and Grassland Change constitutes a further development step in terms of grassland products 
and requirements. Besides a change of the HRL Grassland product specifications concerning improved 
spatial resolution (HRL 2015: 20m, HRL 2018: 10m) and minimum mapping unit (MMU) (HRL 2015: 1 ha, 
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HRL 2018: 10m) a new product has been defined, the grassland change layer 2015-2018. Further, a 
possible grassland use-intensity product is under discussion. Class definitions of the products are 
unchanged in order keep product traceability and comparability. HRL production targets the HRL 2018 
Grassland Status Map at 10 m, the HRL Grassland Change 2015-2018 Map at 20 m, and additional 
products, in consistency with the HRL 2015 additional products: Grassland Vegetation Probability Index 
GRAVPI, Ploughing Indicator PLOUGH and Confidence Layers. In addition, guaranteeing traceability, the 
following products are envisaged: time feature identification layer, production unit layer, time features, 
parent scene identification layer, data score layer, data density layer and time series completeness layer. 
These layers contribute to the quality assessment. The processing environment is Mundi DIAS. In this 
regard, it must be noted that the grassland prototypes in ECoLaSS have well ahead addressed the spatial 
resolution specifications and improved the preexisting grasslands, defining innovative workflows towards 
operational roll-out.   

HRL GRASSLAND PRODUCT DEFINITION 

The HRL Grassland 2015 is accompanied by both, a scientifically sound and solid definition about the 
diversity of grassland types and various typical grassland landscapes that have to be part of the grassland 
product, as well as a distinct declaration about what has to be excluded. Grassland within the context of 
this product represents herbaceous vegetation with at least 30% ground cover and with at least 30% 
graminoid species such as Poaceae, Cyperaceae and Juncaceae. Additional non woody plants such as 
lichens, mosses and ferns can be tolerated. 

Table 2-2: Definition of Grassland according to the HRL Grassland 2015 

Elements to be included in the grassland 

product 

Elements to be excluded from the grassland 

product 

 Natural, semi-natural, agricultural / managed 

grass-covered surfaces 

 Grasslands with scattered trees and shrubs 

covering a maximum 10% 

 Heathland with high grass cover, maximum of 

10% non-grass cover 

 Coastal grasslands, such as grey dunes and salt 

meadows located in intertidal flat areas with at 

least 30% graminoid species of vegetation cover 

 Sparsely vegetated grasslands (>30% vegetation 

cover – cf. comment below) 

 Grasslands in urban areas: parks, urban green 

spaces in residential and industrial areas 

 Semi-arid steppes with scattered Artemisia scrub 

 Meadows: grassland which is not regularly grazed 

by domestic livestock, but rather allowed to grow 

unchecked in order to produce hay 

 Grasslands in urban areas: sport fields, golf 

courses 

 Grasslands on land without use 

 Natural grasslands on military sites 

 Peat forming ecosystems dominated by sedges 

 Reed beds and helophytes dominated systems 

 Tall forbs, fern, shrub dominated vegetation 

 Grasslands that have been observed as tilled (in 

the reference year or a certain period before, in 

that case they are considered as arable fields) 

 Rice fields 

 Vineyards, orchards, olive groves, (if more than 

10% shrubs or trees) 

 Tundra dominated by shrubs and lichens  

 Grassland on fresh (and older) clear-cuts in the 

woods 

 

 

 

 

 

 

 

 

The rate of 30% ground cover density shall be understood as a benchmark implicating that grasslands 
with ≥30% ground cover can usually be distinguished very clearly from bare ground on EO data with the 
resolution of 20m. According to this reference, the classification of grasslands focusses on “dense 
grasslands” that can be identified with high accuracy. The definition of the HRL 2015 has proved to be a 
very practicable one during the production. It allows continuity, consistency and comparability regarding 
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a time and geographic perspective on pan-European level and it is considered to give valuable results. It 
is continued in HRL2018 production.  

METHODOLOGY 

The mapping of grasslands – and of vegetation in general - bases on the detection of canopy density, 
chlorophyll status and expansion of the vegetation cover during the growing season. It works best at 
those times of the year where plants show high photosynthetic activity. Due to this fact and in order to 
get a reliable data basis for the classification, the HRL Grassland 2015 uses a multi-seasonal, multi-
temporal and multi-sensor approach.  
 

 Multi-seasonal describes the use of EO data from different seasons concerning those periods of 
the year where grassland could be identified best and – taking account of agricultural 
management schemes as well as grassland mowing cycles - at the same time be well 
differentiated from croplands and bare grounds. 

 Multi-temporal in this context means a time series of classifications using EO data from 1 up to 3 
years for the reference period depending on the availability of suitable data (regarding cloud 
cover, covering of the area, etc.). Where necessary, EO data 2015+/-1, meaning data from the 
years 2014, 2015 and 2016, build the baseline for the reference year 2015. Data from preceding 
years cover the historic time period. However, the largest part of satellite data is from 2016 
(~71%). The temporal series include images from 2015 (~18%), 2014 (~10%) and 2013 (~0,5%), 
respectively. 

 Multi-sensor implies the use of several sensors to fill the gap in suitable data and to complement 
the advantages of optical data, namely Sentinel-2A (~59%), Landsat 8 OLI (~41 %), Landsat 7 
ETM+, Landsat 5 and IRS-P6 with the benefits of SAR data from Sentinel-1.  

The HRL Grassland 2015 is the result of an elaborate workflow, pursuing both, the accurate identification 
of grassland and at the same time the exclusion of distinct non-grassland areas. 
 
All selected optical EO data (Sentinel-2A and Landsat 8 for the reference period, all sensors for the 
historic period) were used for a multi-scale and multi-sensor segmentation. These image segments, 
together with training samples of the main land cover classes, provided the basis for subsequent 
iterative supervised object-based classification of dense time series of both, optical and SAR data 
(Sentinel-1) with the support vector machine algorithm. Pursuing a strategy of exclusion, additional 
layers such as vegetation indices basing on Sentinel-2A and Landsat 8 enable the identification of tilled or 
harvested cropland and helped to exclude non-grassland areas. Potential overlaps were reduced by using 
thresholds from the HRL 2012/2015 concerning Imperviousness, Tree Cover Density and Permanent 
Water Bodies. The resulting intermediate scene-based grassland masks (each individually weighted 
reflecting their relevance within the classification) were then combined with a single SAR-based 
classification layer. The rule-based evaluation of the results of the optical classification in combination 
with those of the SAR classification allowed a further enhancement of the reliability and accuracy of the 
final grassland layer by ways of excluding critical non-grassland land cover that could not adequately be 
captured by optical classification, such as horticulture or vineyards. 
 
Verified through a systematic stratified random sampling, the filtered and harmonized final HR GRA 2015 
product proves an overall thematic accuracy of over 85%.  
 
The GRA 2015 mask been derived by classifying nearly 4225 single satellite images (Sentinel-2, Landsat 8 
OLI) from the 2015 reference year. In Figure 2-5, the total amount of images used for the production of 
the GRA 2015 mask, is displayed per year and satellite. The available multi-temporal Sentinel-2A data 
coverage of the project area was quite satisfying in southern Europe, but the number of cloud free 
acquisitions decreased steadily to the North (i.e., hardly any cloud-less Sentinel-2A observation could be 
observed). For that reasons additional HR data sets from other sensors and with different specifications, 
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like e.g. Landsat-8 OLI data, were used as additional data source to complement as much as possible 
seasonal time-series. The launch of Sentinel- 2B in March 2017, now provides European coverage every 5 
days instead of every 10 days with Sentinel-2A only, which guarantees a much higher rate of optical data 
and a larger amount of cloud-free acquisitions. These dense acquisitions highly increase the possibility of 
covering the relevant time windows for grassland mapping with cloud-free data. Nonetheless, the 
implementation in ECoLaSS suggests that data situation is highly yearly and seasonal dependent. In this 
regard, the contribution of Sentinel-1 data should be exploited for classifying grasslands and to 
complement the time-series in those areas, where optical data are not of suitable quality due to haze, 
clouds or cloud shadows. Moreover, Sentinel-1 significantly enhances the discrimination between 
grasslands and other land cover features if appropriate training samples are available.  
 

 

Figure 2-5: Summary of the total amount of images used for the production of the GRA 2015 mask, per year and 

satellite. 

Additional products 

The Ploughing Indicator PLOUGH indicates the time period (in years) since the last ploughing activity has 
taken place (Figure 2-6), respectively when grassland has been converted into cropland. For those 
countries with differing tilling regulations the PLOUGH then provides additional information on potential 
grassland areas. 
 
Whereas the grassland layer derives from EO data of the reference year 2015+/-1, the ploughing 
indicator relates up to 6 preceding years, identifying those areas which have been tilled within this 
period of time. It highly depends on the availability of suitable historical data. The final HRL Grassland 
2015 implies only the non-tilled areas.  
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Figure 2-6: Final Grassland layer in Central Europe (green) and PLOUGH, indicating the number of years since the 

last ploughing activity in orange/red shades. 

The Grass Vegetation Probability Index GRAVPI (Figure 2-7) indicates the degree of reliability of the 
multi-seasonal optical grassland classification for the reference year of 2015 (EO data from plus/minus 1 
year). It represents the number of scenes the optical classification bases on as percentage values. A high 
number of adequate imagery improves the accuracy and reliability of the final classification (indicated in 
bluish shades). Due to the variability of the data base (caused by limitation through atmospheric 
disturbances, cloud cover or technical constraints), GRAVPI values may differ in neighboring working 
units. 
 

 

Figure 2-7: Example of GRAVPI from Turkey. The upper Working Unit (WU) provides a high number of adequate 

scenes for classification and thus a better data base than the WU below. The GRAVPI above consequently shows 

significantly higher percentages. 

 
Like the main product HRL GRA 2015, PLOUGH and GRAVPI provide a spatial resolution of 20 m and a 
MMU of 1ha. The prototypes in ECoLaSS are produced at a spatial resolution of 10 m and MMU of 0.5 ha, 
as a result of the recommendations extracted from the tests.  
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2.3.3.3 Mapping Mediterranean Grassland with Multi-temporal Earth Observation Data desk study 

With its pan-European component of High Resolution Layers (HRL) the Copernicus Land Monitoring 
Service aims at providing detailed information on land cover and land use, on change of land cover and 
land use and on land cover characteristics. The HRLs 2015 provide land cover information on five main 
themes, namely Imperviousness, Forest, Grasslands, Water and Wetness, and Small Woody Features. 
These layers derived from multi-temporal, multi-seasonal and multi-sensor EO data by application of 
elaborate methodological approaches, which all have been continuously refined during the last years, 
except for grassland. The HRL Grassland 2015 was completely novel, challenged by developing a 
methodology that would be suitable throughout Europe under highly variable conditions and at the same 
time ensured constantly high standard and reliability.  
 
Whereas this specifically designed method for grassland detection proved to be most practicable and 
efficient for Northern and Central European areas and led to a highly accurate HR grassland product for 
the reference year of 2015, the outcomes regarding the Mediterranean region1 showed potential for 
enhancement and fostered a second thought about a methodological adaption. The implementation 
experiences in ECoLaSS suggest a stratification based on bio-geographical regions or landscapes with 
similar characteristics for a potential roll-out. This has also been proved to be the case in the agriculture 
prototypes developments.  
 
The Mediterranean region shows a considerable amount of natural and semi-natural grassland 
formation: roughly 50% of the Mediterranean basin are dominated by grasslands (Eurostat 2013) with 
exceptionally high biological diversity, representing ecosystems of High Nature Value2 (Vrahnakis 2016). 
However, mapping of these and other significant grassland areas by means of EO date is challenging due 
to differing vegetation seasons as well as differing management systems. Main limitations in the 
Mediterranean region are for example the identification of sparse and dry grasslands during arid summer 
months, the detection of grassland in wooded areas, the distinction of grassland and shrubs in 
abandoned regions or the differentiation of very detailed grassland and cropland plots in traditional 
small-scale farming in rural areas.  
 
Methodological adaptions postulate an adequate knowledge and understanding of the climatic and 
geophysical conditions and the land use patterns in the Mediterranean region and of the possible 
consequences this has for the mapping of grassland with EO data. Thus, this study serves two purposes: 
First, it aims at analyzing the characteristic features within the Mediterranean region of the EEA39 
members which differ most from those experienced in the Northern and Central European countries and 
which may have influence on an effective and accurate detection of grasslands with remote sensing 
methods. These include the biogeographic conditions in the Mediterranean region, such as climate and 
soil and the resulting vegetation cover, photosynthetic activity and the growing peak of vegetation; and, 
as the differentiation between grasslands and non-grasslands poses one of the major challenges, the 
specific management systems concerning the cultivation of grassland and agricultural areas that could 
ease this differentiation through the identification of time slots when both types of vegetation differ 
most. 
 

                                                           

1 It has to be pointed out that the term “Mediterranean region” within this study refers to specific areas around the 

Mediterranean Sea which are characterized by Mediterranean climatic conditions as described in the next chapter. 
They are not synonymous with the national boundaries of the Mediterranean countries in a geographical sense. 
The interchangeable expression would be “Mediterranean basin”. 
 
2
 Developed in the 1990s, the concept of High Nature Value displays those areas manifesting exceptional high 

biodiversity and representing typical landscapes which deserve protection. The concept aims at supporting these 
areas throughout the EU-territory by fostering the continuity of low intensity and sustainable farming systems 
across large areas of the countryside (EEA Report No 1/2004).  
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Second, it identifies changing parameters within the current methodological approach of mapping 
grassland and recommends adequate adjustments. An adaption of the time slots for satellite data 
oriented towards the specific vegetation peaks of Mediterranean grassland and a stronger involvement 
of the potential of SAR data can be seen particularly promising in view of an accuracy enhancement of a 
future HRL Grassland layer within the Copernicus Land Monitoring Service. In ECoLaSS, the prototypes 
implementation in phase 2 has incorporated the SAR features from S-1, in combination with S-2 features. 
The multisensory approach has been benchmarked against single sensor in terms of accuracy and cost-
efficiency performance.  
 

2.3.3.3.1 Bioclimatic conditions for grassy vegetation in the Mediterranean region 

Climate - namely the provision with sunlight, suitable temperature and the availability of water - is the 
main factor that influences biological systems and affects the spatial distribution of plants, biomass 
production, growth cycles and vitality and thus sustains ecosystem functions and processes. The second 
factor is the potential of the soil in supplying vegetation adequately with nutrients and moisture.  
 
In order to answer questions of where, when and what type of grasslands we could expect, further 
insights into the underlying geophysical conditions for vegetation growth are an important prerequisite. 

CLIMATE 

Despite being Mediterranean countries regarding geography, most countries of the Mediterranean 
region are divided into several bioclimatic regions. Mediterranean climates (after Köppen and Geiger, 
see Figure 2-8) occur on the west side of the Mediterranean continental land masses between 28° and 
45° latitude. They range from subtropical subhumid to dry climate with warm to hot summers, intensive 
sunshine and seasonal summer droughts3 of variable length, and wet and mild winters with relatively 
high inter-annual variability (Peel et al. 2007; Zolotokrylin 2012), correlating to the climatic subclasses 
Csa (hot and dry summer Mediterranean climate), Csb (warm and dry summer Mediterranean climate) 
and Bsh (steppe-hot Mediterranean climate) regarding parts of the Iberian Peninsula. Mediterranean 
climates function as essential transition zones between temperate and dry tropical climates (Porqueddu 
et al. 2016) and are distinct and at the same time heterogenic as a result of the complicated morphology, 
orographic features, the large mass of water of the Mediterranean Sea and the influence of both, 
Atlantic and Continental macro weather conditions. That causes a high spatial variability of subregional 
and mesoscale climatic features depending on: 
 

 latitude  

 altitude 

 vicinity to the coast 

 location on Eastern or Western coast 

 location in mountainous coasts 

 influence of the Atlantic Ocean 

 location influenced by maritime or continental climate 

The climatic classification after Köppen and Geiger bases on precipitation and temperature, allowing a 
general orientation on the geographical extension of the Mediterranean (Kottek et al. 2006; Peel et al. 
2007; AGROMET/FAO 2006). Characteristic features of the Mediterranean climate type are: 
 

 annual precipitation ranges from 250 to 900mm, mostly falling from November to April  

                                                           
3
 Drought can be defined as an „extended period when evapotranspiration exceeds precipitation, causing the 

depletion of soil moisture and consequently reduction of ecosystem productivity” (Zolotokrylin 2012). Whereas 
dryness is a constant feature of arid areas, caused by climate, drought is a temporary phenomenon. In the 
Mediterranean region, seasonal droughts during the (arid) summer months are a common feature.  
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 average temperatures in winter months go below 25°C 

 the amount of time when temperatures fall below 0°C must not exceed 262 hours a year 

(Aschmann 1973; Spano et al. 2003; Vrahnakis 2016; Rivas-Màrtinez et al. 2003, Rubel et al. 2011) 

 

 

Figure 2-8: Mediterranean climatic map after Köppen & Geiger (Peel et al. 2007). 

 
The tendency to experience (and also the length of) an arid summer period and consequently the risk for 
seasonal summer droughts increases from North to South and from East to West. Given the fact that 
continuing dry periods lead to degraded photosynthetic activity of plants, satellite data from summer 
months should be handled with care for grassland mapping, providing insufficient information on the 
status and the actual existence of vegetation. 

SOIL 

Due to its formation history, a variety of soils can be identified in the Mediterranean basin. Hence, 
grasslands provide a high diversity of plant species proving very flexible and adoptable to different soil 
conditions. 
 
Soil plays an important role in detecting vegetation with remote sensing: soil characteristics do not only 
bear specific vegetation types as result of distinct nutrient and moisture content. Soil also influences the 
spectral response by mixing up its own spectral response with that of the respective vegetation cover. 
This effect is more pronounced in dry areas and arid months of the year, when vegetation gets sparse or 
withers as a result of drought. Particular attention has to be given to special types of soil as the detection 
of grassland in dry areas in the context of the HRL Grassland 2015 taught: saline soils for example show 
unusual deep purple shades. Due to the sparse vegetation and influenced by the dry conditions, the 
grassland vegetation is hard to identify because it mixes up with the spectral response of the saline soil. 
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Hence, basic knowledge on distinct soil features like saline soils (which are frequent in the semi-arid 
regions) or the so-called “ferra rossa”, ferruginous brown soils (e.g. in Spain) showing deviating 
reflectance in the optical spectrum, are indispensable for an accurate mapping of grassland vegetation. 
Concerning land use, there is a clear distinction between fertile and marginal soils: Fertile soils with deep 
organic layer and abundant water supply are mostly used for (intensive) crop farming whereas soils 
which are covered by grasslands show low fertility because of a low organic layer, lack of nutrients and 
often insufficient moisture which makes them marginal for planting cereals (Mesías et al. 2010). As the 
thickness of the fertile organic layer corresponds directly to the climatic conditions (more humid climate 
results in extensive soil and organic layer formation, more arid climate reduces these processes), it can 
be concluded, that grassland mapping in the Mediterranean regions should focus on less fertile, marginal 
soils, assuming that grassland vegetation would be the prior vegetation cover in these regions. As for 
fertile regions, there must be high awareness on the differentiation between grassland and the 
dominating cropland areas. In general, background knowledge on regional soil features is necessary for 
an accurate identification of grassland vegetation. 

ADAPTATION OF VEGETATION TOWARDS BIOGEOGRAPHIC CONDITIONS 

The biogeographic map of the EEA combines the previously stated climatic, geophysical and soil 
characteristics and provides basic information on real as well as potential climatically adapted vegetation 
cover (Canu et al. 2015). Based on hydrologic cycles and the distribution of typical habitats according to 
the EU Habitats Directive, it answers the question of “Where can we expect typical Mediterranean 
vegetation?” and implies that vegetation in the given biogeographic regions follows very distinct annual 
life cycles. 
 

Accurate mapping of vegetation requires data of those time slots when vegetation shows the highest 
level of photosynthetic activity. The question of “When can we expect vegetation?” is first and foremost 
determined by the local and seasonal climatic conditions, which means that vegetation flourishes if the 
provision with water and sunlight is adequate. The life cycle of all plants (i.e. growing season) starts as 
soon as temperature goes above 12°C and water availability is sufficient. It comprises germination and 
seedling emergence, stages of flowering and seed set and ends with dieback of parts or the whole plant 
or the entering of dormancy when temperature or humidity decreases (George and Rice 2012). 
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Figure 2-9: Biogeographic regions in Europe 2011 (EEA 2012). 

In Mediterranean regions where there is a pronounced summer dry season with seasonal drought and 
mild winter temperatures with high water availability, the growing period of the whole vegetation cover 
experiences a shift: instead of growing from spring to autumn as usual in Central Europe, the growing 
season starts in early spring, shows rapid spring growth and reaches its peak in late spring, just before 
soil moisture is depleted at the beginning of the dry season. At this point, vegetation growth pauses, 
adopting to arid conditions and droughts with summer quiescence/dormancy (in the case of perennial 
plants) or withering and dieback (in the case of annual plants). With the onset of rain in autumn 
vegetation starts regrowth or sprouting and a new life cycle begins. Depending on temperature and the 
amount of precipitation in winter, some areas show vegetation growing even during the winter months 
(Ervin et al 2004): if temperatures remains above 12°C during winter months, high photosynthetic 
activity and water use efficiency can be observed, resulting in high growth rates in autumn and winter 
months. If temperature is moderate, vegetation growth slows down and restarts rapidly with increasing 
temperatures in spring. In this sense, the consideration of phenology dynamics throughout the year and 
monitoring of longer periods by means of biophysical indicators and time series indicators is to provide 
cross-cutting products enriching the binary masks (e.g., as addressed in WP41). 
 
Mediterranean grasslands have adopted similarly to the warm to hot and dry climate with a life cycle 
following the annual rainfall distribution, reacting particularly sensitive to variations in precipitation 
(Carmona et al. 2012). Consequently, ideal time slots for the detection of grasslands are:  

 Spring: February-April for a first vegetation peak with high level of photosynthetic activity 
 

 Autumn: September-November for a second vegetation peak after the beginning of winter 

precipitation; in Southern regions where winter temperatures stay above 12°C, vegetation can 

be detected throughout the winter months and could provide additional data for grassland 

mapping. 
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The distinct situation in the Mediterranean region places high demand on the selection and the 
assessment of satellite data. The objective of an optimal detection of grasslands has to consider several 
aspects: the shortened and shifted vegetation peaks of grasslands under dry conditions, a high inter-
regional and inter-annual variability in the climatic patterns and an increasing aridity in summer going 
from North to South and from East to West, which results in quite restricted time slots for adequate 
satellite data. 
 

2.3.3.3.2 Grasslands in the Mediterranean region 

The term grassland involves several aspects: according to the working definition for grassland underlying 
the HRL Grassland 2015 (see chapter 2.3.3.2), it comprises a diverse range of plant species, of grassland 
types depending on the geophysical prerequisites and of Mediterranean landscapes shaped by grassland 
vegetation.  
 
Due to its large-scale and synoptic approach of mapping grasslands, remote sensing data cannot aim at a 
detailed estimation of distinct plant species. However, being aware of the diversity of vegetation cover 
and of the different growing conditions that favour or discriminate a specific type of vegetation cover, is 
an important prerequisite for two reasons: for the accurate detection of grassland, due to its highly 
variable range of spectral characteristics and for the identification of adequate time slots for satellite 
data acquisitions, due to growing characteristics. The same thoughtfulness has to be paid for the 
different environments grassland is part of, because surrounding land cover features influence the 
spectral response of grassland and may complicate the clear differentiation between grasslands and non-
grasslands. 

GRASSLAND DOMINATED LANDSCAPES  

In the Mediterranean region, grassland is traditionally part of characteristic landscapes such as 

 wooded grasslands with oak trees, cork-oak trees or olive trees, providing the economical basis 
for sylvo-agro- or sylvo-pastoralism, p.e. Dehesa (Spain) 
 

 grassland-shrubland mosaic used as pastures or basis for agro-pastoralism like Mato (Portugal), 
Maquis (France), or Macchia (Italy); the density of the shrub cover varies within these landscapes 
 

 degenerated grassland-shrubland-mosaic with singular trees and taller shrubs due to intensive 
grazing, wild-fires or extreme droughts like Garrigue (France, especially Corse) or Phrygana 
(Greece, Turkey), or abandoned areas 
 

 highland pastures 

Whereas spacious rangeland or pastures are well detectable relating to large-scale and widely 
homogeneous spectral characteristics, these typical Mediterranean landscapes with their heterogeneous 
vegetation are challenging to map with remote sensing. Excluding scattered trees, as for the common 
sylvo-agro-pastoral areas, or shrubby areas in mixed grassland landscapes proved to be difficult with 
optical data only, as experiences within the HRL Grassland 2015 has shown. In many cases that meant 
also excluding a larger amount of grassland, due to the mixed spectral responses at a spatial resolution 
of 20m. Being able to detect texture and structure of the surface, SAR data could fill the gap. An accurate 
SAR classification could well enhance the optical classification by focusing on specific non-grassland area 
classes that can be better detected using SAR data, and can therefore be excluded from the grassland 
areas.  

GRASSLAND TYPES 

Wet and dry grasslands 

Grassland types are strongly related to climatic conditions. In those areas showing temperate climate 
with sufficient precipitation in all seasons and adequate nutrient supply due to favourable soil 
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conditions, the grassland types and their specific composition of grassy plants are similar to those of 
Central Europe. Additionally, there can be found regional grassland types such as wet grasslands, e.g in 
Bulgaria (the country belongs to the sub-Mediterranean climate type: Hájek et al. 2007). Wet grasslands 
are seldom in the Mediterranean region. More common is the type of dry grasslands due to predominant 
arid climate. 
 
The origin of dry grasslands is often human intervention in the past, when Mediterranean forest 
landscape has been cleared in order to provide new arable land for an increasing population. Dry 
grasslands nowadays account for the majority of grassland biotopes on relatively dry and nutrient-poor 
soils overlaying acid rocks or deposits such as sands or gravels. They have been used as common grazing 
pastures and are characterized by short plant cover and high biodiversity. Dry grasses are a typical part 
of the vegetation cover of grassland dominated landscapes such as steppe grasslands, Alpine grasslands, 
extra-zonal dry grasslands or Secondary grasslands4. An active grazing scheme is a precondition for 
preservation, otherwise those areas return to shrubland and later on to forest. Three functional types of 
Mediterranean dry grasslands can be identified: wintergreen perennial grasslands, wintergreen 
ephemeral grasslands, and, if moisture allows, summergreen perennial grasslands (Guarino 2006; 
Porqueddu et al. 2017). 
 
Concerning the identification of grasslands with remote sensing, wet grasslands are well detectable with 
optical EO data, due to the high vitality of the grassland plants. Although grassland and cropland both 
show similar spectral responses during a similar annual growing period, they can be well differentiated 
by taking into account the differing management systems concerning different time slots for mowing in 
the case of grasslands and harvesting and tilling in the case of cropland. In contrast, the differentiation of 
wet grassland and flooded areas can be challenging. Experience so far shows that a well-considered 
selection of imagery potentially complemented by SAR data (regarding permanent wet areas) shows 
convincing results. 
 
Dry grasslands, however, are very difficult to map with remote sensing. Due to the reduced 
photosynthetic activity during the arid summer months, the then sparse and withered plant cover is hard 
to distinguish from harvested areas, dried crop cover or from bare soil. Hence, imagery from spring and 
autumn offer a more suitable base for grassland detection. 

Annual and perennial grasslands 

Annual grasslands plants are very common vegetation cover understory of woodlands and have different 
life cycles from perennial grassland plants. They are well adapted to the highly variable Mediterranean 
climate and to regular summer droughts. They produce a huge amount of seeds that survive for a long 
time in soil seed bank, waiting for early spring precipitation and warm temperatures to sprout. 
Therefore, annual grasslands turn out to be reliably growing every year in the same areas (Cosentino et 
al. 2014). The life cycle of annual grassland plants usually starts in early spring, showing rapid growth 
during spring with germination development of seedlings and flower. As soil moisture is depleted, the 
plants wither and die.  
 
Perennial grassland plants dominate most of rangelands and cease growing during summer drought 
(drought escape) until autumn, when rainfall allows growing anew. They show growing and increasing 
photosynthetic productivity in autumn reaching their peak in early spring and re-entering dormancy with 
the beginning of the dry season. 
 

                                                           
4
 Secondary grasslands are grasslands following human intervention such as logging, forest clearing or fire events 

which is the case for a large area of the Mediterranean grasslands. Predominantly used as pastures, Secondary 
grasslands highly depend on permanent cultivation, be it mowing or grazing. Abandoned pastures are at risk of 
becoming overgrown by bushes or turning into forest (Porqueddu et al. 2017).  
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Wet and dry grassland types as well as annual and perennial grassland plants are both subject to the 
same regional climate conditions. Despite having evolved different strategies for conquering cold and dry 
stages of the year, both start their life cycles at the beginning of the rainy season reaching their highest 
level of photosynthetic activity at the end of spring. It is highly recommendable to adopt the 
classification method in focusing on this time of the year because grassland vegetation will then be well 
detectable (Cosentino et al. 2014). During summer dormancy, there is hardly any vegetation detectable. 
Satellite data for this time of the year provide only little additional information and should therefore be 
handled with care concerning the time series for image classification. 
 

2.3.3.3.3 Land use and agricultural management schemes 

The following map shows areas within the Mediterranean climatic region (area within red boundaries) 
and the predominant land cover type according to statistics of the European Union (Turkey: no data 
available). It illustrates the main difficulty of mapping grasslands: the statistic data distinguish several 
types of land cover, emanating from an approach of land use. Exempt from areas of Artificial Dominance, 
Dispersed urban areas and Forest, grasslands can be found in all other classes, even be partially included 
within the class of Broad pattern intensive agriculture. Consequently, a methodological approach for 
grassland detection has to take into account that areas of grassland are located in large areas which are 
mixed up with various types of land cover. 
 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 39| Issue/Rev.: 2.0 

  

 

Figure 2-10: Dominant land cover in Europe and the Mediterranean region (red boundaries) (EU 2017 and 

EUROSTAT 2013) 

Traditional Mediterranean agriculture is generally based on vegetation adapted to the local climatic 
conditions and to soil fertility and has developed unique agro-ecosystems especially for arid and semi-
arid regions (Harlan 1992). Due to population and cultural development, land use patterns have been in 
constant change since the first settlements of man. However, following the climatic conditions, land use 
shows divergent patterns in the Northern and the Southern parts of the Mediterranean countries. In 
general, there is a tendency towards focusing on crop production in favourable areas which in turn leads 
to abandonment of vast grasslands and consequently widespread bush encroachment due to the 
reduced number of livestock (Landau et al. 2000; Plantureux et al. 2000; Ates et al. 2012).  

CROPLAND MANAGEMENT 

Besides crop farming, livestock farming and diverse types of pastoralism, land use patterns imply olive 
orchards, vineyards and horticulture. Hence, the predominant farming systems in the Mediterranean 
countries can be grouped into three major types of agricultural land use patterns:  

 Irrigated systems 
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 Rainfed systems 

 Agro-pastoral systems 

Irrigated systems, implying intense type of agricultural land use patterns, occur independent from 
climatic conditions under both humid and arid regimes and occupy in most cases the more favourable 
areas concerning soil fertility. Diversity of crops and management schemes are varying, but there are 
seasonal cropping patterns: 

 Winter crops (esp. wheat and barley) and 

Winter legumes (chick pea, lentil, faba bean): Planting or sowing starts in November/ 

December 

       Harvest takes place in April/May 
 

 Summer crops (esp. maize, rice):  Planting starts in February/March 

       Harvest takes place in June/July 

Irrigated systems in their intense and economic form are characterized by larger parcels and are 
therefore well detectable by satellite data. During summer dry periods, irrigated fields stand out by their 
much higher vegetation activity compared to the surrounding areas.  
 
Rainfall-based systems are highly dependent on precipitation pattern, their starting point and 
productivity as well as on the capacity of soil in storing humidity. The diversity of crop production rapidly 
drops as aridity increases. Generally, the productivity of those systems is low, mainly producing for small 
rural markets or for subsistence (ICARDA/Biradar). Rainfall-based systems show high variability with 
regard to crop types and annual management schemes. Remote rural areas show a high heterogeneity of 
agricultural patches which means that agricultural units tend to be smaller and also tend to cultivation of 
smaller patches of arable land. This makes it more difficult to differentiate the various vegetation cover 
with remote sensing data (EUROSTAT 2016: Agriculture and Environment). 
 
Agro-pastoral systems mainly occur in the arid and marginal regions of the Mediterranean basin with 
soils of low fertility. The cropping pattern and its diversity and productivity within these systems is 
strongly associated with the occurrence, the yield and annual shifts of the rainfall season. In areas with 
less than 200 mm precipitation, barley-small ruminant production is the most common. 200-500 mm of 
annual precipitation allows the production of wheat and small ruminants, whereas precipitation above 
an amount of 500mm permits horticultural production and cash crop growing (Ates et al. 2012). 
 
Both being strongly dependent on water supply and therefore sharing the same short vegetation period, 
the life cycle of grassland strongly resembles the life cycle of crops. For both, the onset of precipitation, 
the amount of water and the soil capacity in water storage are the prerequisites for developing a vital 
plant cover. In rural areas of the Mediterranean region, farmers rely on both, crop farming and 
pastoralism, adopting to the natural geophysical conditions. The map above reflects the heterogeneity of 
agricultural areas in the European Mediterranean region. 
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Figure 2-11: Share of utilized agricultural areas (UUA) in different land uses at NUTS 25 level, 2010 (EU2017). 

 

The detection of grassland areas in agro-pastoral systems is highly demanding. Agricultural plots 
generally show small-scale structures which can barely be identified with optical data providing 20 m of 
spatial resolution. Moreover, small-scale farmers follow an individual cultivation scheme, being oriented 
towards annual variation of precipitation and temperature, changing soil quality and personal needs 
(Casas et al. 2015; Hervieu 2006; JOUVEN et al. 2010; Maranon 1988; Montserrat et al. 1990; Roggero et 
al. 2013; Todorovic 2016). Consequently, there is no general time scheme that could support a large-
scale differentiation of cropland and grasslands within remote rural areas. However, it can be assumed 
that larger, coherent areas are detectable after tilling or harvesting events. 

GRASSLAND MANAGEMENT  

Corresponding the definitions of the HRL Grassland 2015, natural and managed grasslands both are part 
of the grassland product. Besides natural grassland areas in more elevated regions, there are two main 
categories concerning the land use pattern of grasslands: 

 Meadows: grasslands that are harvested predominantly by mowing  
Meadows primarily occur within the humid-subhumid regions, providing enough plant cover and 
density to be used intensively for fodder production; they are often part of agricultural areas. 
 

 Pastures and rangeland: grasslands that are harvested predominantly by grazing 
Pastures and rangelands constitute the dominant management type within the Mediterranean 
landscape implying slightly different management schemes: Sylvo- or agro-sylvo-pastoralism 
consisting of oak trees, shrubs, annual herbaceous species, fodder, winter cereal (Sitzia et al. 

                                                           
5
 NUTS, Nomenclature des Unites Territoriales Statistiques, is a classification system dividing the area of the 

European Union in three hierarchic levels (NUTS 1, 2, 3). This classification provides the basis for a pan-European 
cross-border comparison of statistical data (EC No 1059/2003 of the European Parliament and the Council 2003). 
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2011); pastures of the dairy cattle or sheep system (compared to beef cattle) shows high 
vegetation in spring caused by higher soil fertility.  

The remote sensing-based differentiation of small-scale agricultural management from grassland 
management of pastures and rangeland is very challenging. Due to the extensive management of these 
grassland landscapes which is very common in the rural Mediterranean region, general characteristic 
management features such as distinct time slots for mowing, harvesting or indications of intensive 
grazing are hard to find (Catorci et al. 2012; Dusseux 2014; Jacques 2014; Louhaichi et al. 2012; Möckel 
et al. 2014; Salis et al. 2011; EUROSTAT 2016: Agriculture and Environment). Generally spoken, early 
spring is the preferred grazing time for ruminants, when grasslands are vital due to warm temperatures 
and sufficient rainfall. The ruminants remain grazing until April or until all is grazed out. Depending on 
the length of summer drought and the general amount of precipitation in autumn and winter, the 
ruminants will graze again in the winter months or will be raised on a crop-residue, planted fodder or 
barley grain system (ICARDA/Biradar). It is the nature of extensive pastoralism6 that it contributes to a 
sustainable management of grasslands, consequently no significant signs of grazing, respectively 
management are detectable with remote sensing during the course of the year. 
 
There is only marginal human intervention concerning the management of pastures and rangelands, 
albeit in some areas, p.e. Sardinia, farmers do clearing cuts at the middle of February/March in order to 
stimulate plant growing in the upcoming grazing season (Porqueddu et al. 2016). Since livestock density 
in the rural areas is highly variable, too, even the grazing scheme and its intensity changes in timely and 
regional aspects.  
 

2.3.3.3.4 Challenges for mapping grassland in the Mediterranean region by means of EO data 

The detection of grassland by remote sensing is challenged by 

 the heterogeneity of the physical landscape 

 the heterogeneity of the Mediterranean climate plus high annual variability 

 the heterogeneity of the farming systems 

 the dry conditions in the Southern and arid areas 

 abnormal conditions like droughts 

 the problem of abandonment: due to the reduced number of livestock, rangeland risks to end up 

in widespread bush encroachment (Landau et al. 2000; Bernués et al. 2011) which could hardly 

be identified as grasslands 

 

Optical data detect the photosynthetic active parts of the plant and thereby capture the vitality of 
vegetation. Thus, detection of grassland works best in its active growing period, but it shows high 
limitations in periods of degradation and drought. The selection of adequate time slots is the focal point 
in using optical data. 
 
For temperate humid and sub-humid areas, the situation is similar to that in Central European countries: 
the time slot for detection will start in late spring/early summer, continuing until autumn. Due to 
sufficient supply of water, vegetation period is more influenced by temperature which means that data 
base ranges from April until September/October when temperature goes above 12°C. For those areas, 
the original methodological approach for the classification of grasslands has proven to be best practice. 
 
In dry or arid areas however, the growth of vegetation depends essentially on the sufficient availability of 
water. Growth stops, plants die or wither and stop their photosynthetic activity. Thus, resting upon the 

                                                           
6
 According to the EEA, extensive grazing means that the stocking density of grazing livestock doesn’t exceed 1 

livestock unit per ha of forage area (EUROSTAT 2016). 
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detection of photosynthetic activity, optical satellite data of arid periods provide hardly any reliable 
information about the existence of grassland. Depending on the length of the arid period, possible time 
slots for recording grassland would be February to April and September to November or even the whole 
winter, when grasslands show high vitality due to high amount of precipitation at that time. At those 
very early and late times of the year however, the information provided by optical data might be 
severely limited. Coastal fog and clouds caused by seasonal mesoclimatic weather conditions during the 
winter months, atmospheric haze and shadow effects induced by the lowered solar zenith angle, 
significantly reduces the number and quality of suitable satellite data. 

 
As SAR is able to act independent from sunlight and atmospheric interferences, SAR data are highly 
suitable for substituting missing information about vegetation cover. Regarding arid areas, SAR data from 
October/November and during winter months could give additional information about grassland 
vegetation cover disregarding atmospheric opacity, clouds or shadows and thus supplement an adequate 
database for the classification. Due to their ability of detecting texture and structure, SAR data are able 
to support the identification and classification of specific non-grassland classes which are better 
detectable using SAR imagery than optical imagery which eases their exclusion from the grassland area. 
Additionally, SAR coherence can aid in the detection of bare soil which can indicate mowing events of 
grassland or cultivation and ploughing of grassland areas and therefore their conversion into cropland. In 
this regard, SAR data and SAR classification provides high potential (see previous chapters).  

2.3.3.3.5 Conclusion 

Summarizing the main findings of this study, the following adoptions of the methodological approach for 
the mapping and detection of Mediterranean grasslands are recommended: 

 Based on the bioclimatic conditions, the methodological approach has to be adapted for those 
areas showing a prolonged arid period or summer drought. That is the case for most Southern 
areas and Western coastal regions of the Mediterranean basin. There are Mediterranean 
subtypes of the Temperate climate classes which can be found in the hinterland of the Eastern 
part (Rivas-Màrtinez et al. 2004 and 2011; Peel et al. 2007) and may also show locally dry 
seasons and arid periods but not as large-scale as the Mediterranean one. 

 

 Due to limitations in identifying dry or degraded vegetation with remote sensing methods, the 
methodological approach should focus on those time slots where grassland shows high 
photosynthetic activity and the most vital and dense plant cover, being February to April and 
September to November when precipitation and temperature allow the growing of vegetation. 
In Southern regions with mild winter temperature above 12°C, the whole winter months could 
be used for grassland detection. 

 

 Dry vegetation has proved to be problematic because it can hardly be identified and 
differentiated from bare soil by optical data, consequently the dry summer months between 
May and August (in some areas even longer) have to be handled with care regarding the optical 
classification. 
 

 In order to get a reliable and adequate data basis for the grassland classification, SAR-data could 
fill information gaps about grassland vegetation cover during autumn and winter caused by 
clouds, atmospheric constraints or shadowing.  
 

 SAR data show high potential in identifying distinct texture and typical structures (as already 
used within the HR GRA 2015, see chapter 2.3.3.1 HRL Grassland production). SAR classification 
facilitates the exclusion of scattered trees within agro-pastoral landscapes, shrubland formations 
or the regularly structure of olive orchards and horticulture as well as of cropland areas which 
results in a significant enhanced grassland. 
 

 The advantages of optical classification concerning the detection of typical vegetation parameter 
of grassland and a recording time adjusted to the specific plant phenology in the Mediterranean 
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region could well be complemented by an intensified involvement of SAR classification. These 
adoptive measures are highly recommended for a suitable and accurate grassland detection 
regarding the specific conditions in the Mediterranean region. 

 

2.3.4 Agriculture 

Satellite remote sensing is an undisputed source of agriculture information for a vast range of users at all 
geographical scales. The gap between agricultural EO-derived data producers and users is increasing, 
enhanced by the fact that spatial data infrastructures are making a great volume of geographic 
information widely available; therefore, it is important to understand the various concepts and 
constraints underlying cropland and crop type mapping.  
 
In the context of agricultural statistics, this is particularly critical in light of the fact that in agricultural 
surveys, land cover maps are often used to support stratification at the sampling design level. Indeed, 
simple cropland maps or more specific maps depicting cropping intensity can significantly reduce the 
sampling variance or the ground sampling effort and associated costs. Land cover maps can highlight the 
non-agricultural strata that are not to be sampled, or the strata that could be sampled differently. As 
illustrated by Delincé (2015), if a non-agricultural stratum covers one third of the administrative area of 
interest, the reallocation of the entire sample to the remaining strata – including cropland areas – will 
provide a relative stratification efficiency of 1.51 at almost no cost. The efficiency of stratification clearly 
depends on the relevance of the land cover map selected for the stratification.  

 

Figure 2-12: Workflow for cropland mapping from satellite observation time series. (Dashed lines correspond to 

alternative pathways). 

This section reviews some key elements of the crop mapping process, as organized according to a 
standard workflow (Figure 2-12). The first steps of this process consist in the selection of the appropriate 
land cover typology, the collection of the in situ data and the acquisition of the remote sensing imagery. 
The digital exploitation of these satellite images requires a sequence of standard operations to be 
completed carefully, and thus derive an accurate cropland map. As land cover maps are readily available 
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for some regions, the relevance of existing maps to agriculture will be discussed systematically on the 
basis of a set of well-defined criteria.  
 

2.3.4.1 The concept of land cover for cropland mapping 

Land Cover Classification Systems (LCCS and LCML) 

To ensure full interoperability between all land typologies and provide common grounds for describing 
land cover, FAO developed the Land Cover Classification System (LCCS) as a conceptual framework for 
legend definition. Through a dichotomous modular-hierarchical system based on several sets of 
descriptors, namely the classifiers, the FAO-LCCS tool aims to explicitly clarify each land cover class, and 
therefore enables translating from one typology to another (Di Gregorio and Jansen, 2000; Di Gregorio, 
2005). More recently, the LCCS framework was modified into the Land Cover Meta-Language (LCML) and 
became an ISO standard, to improve its flexibility with unbounded classifiers and a richer class 
description. The LCML is an object-oriented classification system in which each land cover feature is 
characterized by a series of elements that can be further detailed by a set of attributes. In this sense it 
shares partly the principles selected for the EAGLE system which is further described in the section 2.3.5. 
 
For the sake of clarity, transparency and intercomparison, it is internationally recommended to use the 
LCML framework to define any given land cover typology prior to conducting any mapping effort. For 
instance, the recent land cover Globland30, which was delivered in 2014 thanks to highly intensive and 
comprehensive efforts, poorly defined the land cover classes related to agriculture; this seriously 
curtailed its use for many agriculture and livestock applications.  
 

Agriculture in land cover typology 

In the context of agricultural statistics, the stratification definition used for the sampling design relies 
primarily on the land cover classes related to agriculture. It is noteworthy that cultivated land is not, 
strictly speaking, a land cover class, but rather a land use class. For example, the land cover of a cereal 
field is more precisely a dense herbaceous vegetation, while only its land use should refer to agriculture 
or cropping activity. However, all existing land cover typologies integrate agriculture-related classes 
because of their importance for the landscape structure and for map users.  
 
While agriculture may at first seem to be the easiest ‘land cover’ class to map for, this is a major source 
of misunderstanding and discrepancies between existing land cover maps, even when simply considering 
cropland and no cropland. This situation is exacerbated when considering the vast diversity of 
agricultural lands throughout the world, from double-cropping rice fields in Asia to the Mesoamerican 
traditional milpa intercropping system, from the European fallow lands to African perennial plantations 
such as cacao under the forest canopy. 
 
The World Program for the Census of Agriculture 2020 (vol. 1, p. 82) proposes the following definitions, 
obtained by aggregating LCML classes:  
(i) Arable land is land that is used in most years for growing temporary crops. It includes land used for 
growing temporary crops during a twelve-month reference period, as well as land that would normally 
be so used but is lying fallow or has not been sown due to unforeseen circumstances. Arable land does 
not include land under permanent crops or land that is potentially cultivable but is not normally 
cultivated. Such land should be classified as “permanent meadows and pastures” if used for grazing or 
haying, “forest and other wooded land” if overgrown with trees and not used for grazing or haying, or 

“other area not elsewhere classified” if it becomes wasteland.   

(ii) Cropland is the total of arable land and land under permanent crops.   

(iii) Agricultural land is the total of cropland and permanent meadows and pastures.   
(iv) Land used for agriculture is the total of “agricultural land” and “land under farm buildings and 

 farmyards”.  
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Based on the LCML framework, Di Gregorio (2013) established a precise and comprehensive cropland 
nomenclature to define cropland. However, in the context of agricultural statistics, the definition may 
raise additional questions, such as the fact that the cultivated area of interest is neither the sowed 
surface nor the harvestable one, but rather the area actually harvested. This is not only a semantic 
discussion for researchers, as the differences can be large in case of drought or floods. 
 
Other than this important discussion, the land cover typology must be workable and compatible with the 
source of data. For satellite remote sensing, the Joint Experiment for Crop Assessment and Monitoring 
network (JECAM) endorsed a definition for annual cropland due to the annual nature of the Earth 
Observation time series: “the annual cropland from a remote sensing perspective is a piece of land of 
minimum 0.25 ha (min. width of 30 m) that is sowed/planted and harvestable at least once within the 12 
months after the sowing/planting date. The annual cropland produces an herbaceous cover and is 
sometimes combined with some tree or woody vegetation.”   
 

The focus on annual cropland is more precise from a mapping point of view, and enables dealing with 
inter-annual changes of land cover, due for example to cropland extension or the abandonment of 
cultivated lands. 

 

It is important to note that the definition adopted by JECAM also includes the concept of the Minimum 
Mapping Unit (MMU), which defines the smallest unit to be considered in the mapping process. For 
example, the mapping process of the EU’s CORINE Land Cover Database was initially set at 25 ha, thus 
considering only landscape features larger than 25 ha. Fortunately, this MMU has been change for the 
change between two CLC maps to 5 ha (see more info in the 2.3.5). The JECAM definition is found quite 
relevant for Sentinel 10 to 20 m resolution, insuring that at least some pure pixels are available to label 
the observation. However, such a specification may lead to the discarding of small fields scattered in an 
urban or forest landscape, which may induce a significant bias in the resulting agricultural land map. 
 

Alternative approaches for land characterization 

Other initiatives, driven by well-targeted objectives, focus on the delivery of single land cover class 
products or binary masks. For instance, the global croplands extent was derived from multi-year 250-m 
MODIS time series using a set of 39 metrics to depict cropland phenology and to derive a global per-pixel 
cropland probability layer using a global classification decision tree algorithm (Pittman et al., 2010). 
Hansen et al. (2013) obtained a bare soil/no bare soil map at global scale by processing the full archive of 
Landsat data since 2000 for its tree cover product. All of these initiatives offer the advantage of providing 
a map product that is focused on the land cover class of interest. Conversely, a major drawback is the 
absence of any concern for complementarities between products, which may lead to significant spatial 
inconsistencies or semantic incompatibilities.  
 
The retrieval of biophysical variables from satellite time series results in a quantitative description of the 
land surface thanks to empirical regression or to physically-based model inversion. Indeed, remote 
sensing products corresponding Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active 
Radiation (fAPAR), albedo, etc. provide direct estimates of undisputable variables that can also be 
measured on the ground. The seasonal evolution of these biophysical variables can characterize the land 
surface, and could sometimes be interpreted in agricultural land cover classes of interest or directly used 
for stratification. However, the capability to identify these biophysical variables from high-resolution, 
free and open-access satellite imagery, such as that provided by Sentinel-1 and -2, has developed only 
very recently. In ECoLaSS, implementation and testing of biophysical time series indicators have been 
carried out in the frame of WP41. The time series available since years at coarse spatial resolutions (250 
m to 1 km) are only useful for stratification purposes in certain agricultural landscapes, which either have 
very large field sizes (as typically occurs in Argentina, Ukraine, the United States of America, Russia, etc.), 
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or with uniform and non-fragmented landscapes comprising many small but similar fields cultivated 
according to a same crop calendar (e.g. in the North China plain or in case of irrigated rice plains). 
 

2.3.4.2 Image processing and cropland map production 

Any land cover map production consists of a sequence of main processing steps. For each of these steps, 
several conceptual and algorithmic choices are possible. Waldner et al. (2016) have shown that crop 
mask accuracy varies more from one agricultural region to another rather than from one state-of-the-art 
method to another. Clearly, certain methodological choices may be more appropriate than others; 
however, ultimately, the quality and quantity of the remote sensing input and of the calibration data set 
play an even more important role, in most cases. The key to success is probably the adequacy of the 
methodological choices adopted for a given quantity and quality of input Earth Observation and in situ 
calibration data, and with regard to the landscape characteristics to be mapped.   

As introduced in figure 1, four main steps in the land cover production chain may be clearly identified: (1) 
image segmentation; (2) feature extraction; (3) classification; and (4) postprocessing, including filtering 
and/or fusion.  

Image segmentation 

The land is discretized into pixels by satellite imagery, while on-screen visual interpretation delineates 
homogeneous patterns. An image raster made of pixels and a vector made of objects are the two main 
conceptual models designed to describe the spatial dimension of the world. When the spatial resolution 
is close or larger than the size of the land cover elements to be mapped, land cover information is 
generally extracted at the pixel level and the segmentation step is not necessary. For VHR or high-spatial-
resolution imagery providing pixels much smaller than the land cover elements, the vector model is 
usually preferred and the image should be segmented into objects by means of image segmentation 
algorithms.  

Image segmentation groups adjacent pixels into spatially continuous objects according to their spectral 
characteristics and their spatial context, aiming to capture meaningful spatially discrete land objects. The 
object-based approach is well-adapted to image texture extraction, has intrinsic contextual information 
avoiding a salt-and-pepper effect in the classification output, and supports multiscale interpretation 
thanks to hierarchical or multilevel segmentation (Radoux and Defourny, 2008). On the other hand, this 
step is also an additional source of error compared to the pixel-based approach. As explained above, it is 
mostly recommended to proceed with object-based classification when the pixel size is much smaller 
than the landscape elements. Typically, metric and decametric images are often segmented into objects, 
while hectometric-resolution images are not. In exceptional cases, pixel- and object-based production 
chains have been designed; consider the interactive production of the GlobeLand30 land cover map (Jun 
Chen et al. 2015).  

Feature extraction 

The feature extraction step consists in computing, from the remote sensing images or time series, the 
most discriminant variables to be used as input for the classification algorithm. These features may be of 
various natures: (1) spectral, as the multispectral reflectance or the derived indices, such as the NDVI or 
any other vegetation, chlorophyll or soil index; (2) temporal, as the minimum, maximum or amplitude of 
a variable over a given time period; (3) textural, as the local contrast, entropy or any other variable 
derived from the co-occurrence matrix; and (4) a spatial or contextual variable that is particularly suited 
to the object-based approach.    
 
Currently, three main strategies may be observed in the field of agriculture mapping. First, classical 
strategies rely mainly on spectral features and, possibly, some simple temporal features based on NDVI 
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time series, considering that these are the sources of all other features in any case. In light of increasingly 
powerful computing performances and the dissemination of machine-learning algorithms, many remote 
sensing specialists now consider that “more is better” (in terms of features) and rely on classification 
algorithms to select the most discriminant ones. Third, knowledge-based strategies aim to integrate 
external expert knowledge by designing ad hoc features according to the classification target and by 
retaining only those features deemed meaningful according to experts’ rationale (Lambert et al., 2016). 
 

Classification 

The classification step consists in one or many numerical processes to finally allocate every pixel or 
object to one of the classes of the land cover typology. The vast diversity of classification algorithms can 
be split into two main types: the supervised type, which uses a training data set to calibrate the 
algorithm a priori; and the unsupervised type, which produces clusters of pixels to be labelled a 
posteriori as land cover class in light of in situ or ancillary information. More recently, forerunning steps 
of supervised classification are found very useful and consist in automatic cleaning of in situ training data 
sets or active learning to build a more efficient training data set, by iteratively improving the 
performance of the classifier model.  
 
The set of methods used to classify images in land cover classes is constantly expanding and is 
summarized in Table 2-3 in terms of strengths and disadvantages. A review of these methods was 
recently completed by Davidson (2016).  
 

Table 2-3: Strengths and weaknesses of algorithms used for large-area classification of satellite image data 

(based on Gómez et al., 2016). 

 

 

Post-processing 

Postprocessing operations can improve the classification output thanks to the possibility to apply various 
filtering techniques or to fuse various classification outputs. First, macroscopic errors can be corrected 
interactively, as they are clearly identified by systematic visual inspection. Basic filtering operators over 
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sliding window of 3 pixels x 3 pixels or 5 pixels x 5 pixels, such as a majority filter removes the salt-and-
pepper effect induced by pixel-based classification. More interestingly, such a majority filter could also 
be applied to pixel-based classification output using objects obtained by multispectral reflectance image 
segmentation, thus providing a much smoother land cover map.    
 
 Fusion techniques are required to merge outputs from the ensemble classifier. A single output map can 
be obtained by majority voting either where the ensemble chooses the class on which all classifiers agree 
(unanimous voting); at least one more than half of the classifiers agree (simple majority); or several 
classifiers agree (plurality voting). Weighted majority voting can be used when some classifiers are 
expected to perform better than others, or are weighted by the associated probability or membership of 
the classification output.  
 

2.3.5 New land cover products 

The increase of temporal and spatial resolutions offered by the Sentinel constellation is expected to 
result in a higher thematic accuracy, through the enrichment of the existing classes used in the various 
LC nomenclatures, available at the moment. There is a real need for a better characterization of the 
cultivated summer and winter crops, their turn-over from one year to the next, that could not be 
achieved through the current implementation based on mono-temporal VHR snapshots, but that will be 
clearly within reach thanks to the use of dense time series. Those quicker deliveries will de facto lead to a 
better monitoring of the different kinds of change or transitions from one LC to another. This aims at 
creating, for example, a sixth HRL, focused on the agricultural LC. 
 
The creation of a pan-European HR LC layer will be obtained by merging together all the currently 
available layers, in addition to this new agricultural layer. This merge constitutes an opportunity to 
enforce a logical consistency between the current and upcoming thematic products, which are being 
produced independently, without requiring post-processing to ensure the spatial and temporal 
coherence. This consistency is also the point of focus for the upcoming CLC+ product. 

2.3.5.1 Previous attempts 

The past known limitations among the available land cover products can be summarized as too low 
spatial and temporal resolutions, as well as some inconsistencies between the different datasets. The 
low to medium spatial resolution, ranges from 100m (for CLC) to 1km (for Global Land Cover (GLC)) – 
which is useful for cartographic purposes mainly, as an insight for business intelligence, but not for new 
thematic reporting concerning urban planning or biodiversity strategy, for example. The lack of 
guaranteed consistency for all available ancillary data retrieved from national datasets can affect the 
various classes and nomenclature chosen or the temporal range covered. More importantly the datasets 
themselves – status layers as well as change layers – can sometimes be an aggregation of national data, 
which have been produced using various methodologies, from full manual process, semi-automated one 
to customized mixed of both. 
 
All those summarized issues have called for the emergence of new LC products, which should exhibit 

new properties to increase their spatial and temporal consistency. The most obvious improvement 

should be an important increase in the spatial (expected to be at least down to 30m, even 10m) and 

temporal resolutions (every year) of the status layers and their updates, synonym of quicker deliveries – 

this should be enable by the design of all Sentinels, if fused data is made obtainable in order to decrease 

the impact of cloudy skies on the optical image production. Users need tends towards update being 

made every three years, and possibly every year in the long term. 
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Previous attempts at mapping land cover at a global or continental scale all suffered from the scarce 

amount of good quality data available for such a task, as well as the scarcity of reference data or ground 

truth data, still valid at the moment of the production. 

Three Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) versions have 

been produced (Gong, et al., 2013) (Yu, Wang, & Gong, 2013) (Yu, et al., 2014). However, the first map, 

FROM-GLC, exhibits an accuracy of 63.69%, at a 30m resolution, with 9 classes – while using a dataset of 

images dating from 20 years ago at the moment of the creation of the map. The supervised classification 

was trained on 90000 samples; and those two facts combined constitute the main reasons to explain the 

low accuracy and the huge amount of manual enhancement needed. 

The second map, called FROM-GLC-seg, employed MODIS data, which resulted in a slight improvement 

of the overall accuracy, at 64.42%, but the same methodology was applied. Finally, the third version, 

FROM-GLC-agg, was an aggregation of the two previous maps at a coarser resolution, for an accuracy of 

65.51%. 

2.3.5.2 CORINE Land Cover 

The CLC inventory was initiated in the 1980s to standardize data collection on land in Europe, mainly to 

sustain environment policy development. Information is provided on LC, through biophysical 

characteristics of the surface, which can be determined in a semi-automated fashion, but also LU, which 

requires the input of a human interpretation, through the use of 44 classes at a level-3 in the hierarchical 

nomenclature, with a MMU of 25ha and a MMW of 100m. Full maps are freely available online 

(Copernicus, 2019). The past implementation has relied on the national entities, through a bottom-up 

process, where each national team independently produces the databases for their own country, before 

the integration at European level. 

Despite its limitations for spatial resolution, which were mainly dictated by the geometrical accuracy 
expected for the first satellite data used in 1985, CLC remains a widely used dataset - may it be as 
primary source for the development of various indicators (Gardi, Bosco, Rusco, & L., 2010), for 
environmental or urban modelling (Siedentop & Meinel) (Gallego, Peedell, & al.) and change analysis in 
the LC/LU (Feranec, Jaffrain, Soukup, & Hazeu, 2010) at European down to regional levels. 
 

Table 2-4: Key elements regarding the evolution of CLC through the years 
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The choice, through the years, to retain such limiting parameters, detailed in Table 2-4, lies in the EEA’s 
will to maintain a full comparability between consecutive releases. At the moment, the complete CLC 
dataset is still the most popular EEA databases downloaded. The time series is complemented by a 
change layer - however, it should be noted that those layers highlight changes with a MMU of 5 ha. This 
difference in MMU means that the difference between two status layers (at a MMU of 25 ha) will not 
equal to the corresponding CLC-Changes layer (at a MMU of 5 ha). This "incompatibility per 
construction" should be addressed in the upcoming CLC+ product. 
 

2.3.5.3 Current state-of-the-art 

A wall-to-wall land cover map at country scale – in this study, France – was produced by the Centre 
d’Études Spatiales de la BIOsphère (CESBio) based solely on Landsat-8 and S-2A datasets (Inglada, et al., 
2017a) for the reference period 2016. The production is fully automated and uses existing datasets as 
reference data for training and validation in supervised classification, without further manual 
enhancement. This processing chain uses the full time series, regardless of the cloud amount, and 
produces maps with 17 LC classes while providing a complementary confidence map at pixel level, listed 
as: 

- Annual summer crops; 
- Annual winter crops; 
- Broad-leaved forest; 
- Coniferous forest; 
- Natural grasslands; 
- Woody moorlands; 
- Continuous urban fabric; 
- Discontinuous urban fabric; 
- Industrial or commercial units; 
- Road surfaces; 
- Bare rock; 
- Beach, dunes and sand plains; 
- Water bodies; 
- Glacier and perpetual snow; 
- Intensive grasslands; 
- Orchards; 
- Vineyards. 
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Figure 2-13: Overview if the 2017 cover map produced by the CESBio (Source: http://osr-cesbio.ups-

tlse.fr/~oso/). 

The following releases of this wall-to-wall land cover map for the year 2018 based on the full time series 
of S-2A and B images, retreated at level 2A, over France (Inglada, 2019), increasing the number of classes 
up to 23 between the iterations 2017 and 2018 to slightly enhance the global accuracy, by splitting the 
annual summer crops into sunflower, corn, rice, tuber or roots, while the winter crops have been 
separated between straw cereals, rapeseed and protein crops. 
 
Further demonstration of the suitability of S-2 time series of the year 2017 for mapping LC over entire 
European countries is found in the results of the project S-2 for Global Land Cover (S2GLC), funded by the 
ESA. The random forest algorithm is used to classify each image of the time series of S-2 images at level 
2A, pre-processed by Sen2Cor (see [AD07]) with a customized improved cloud mask which had to be 
generated for each image, before using aggregation rules to merge them and create the final LC 
classification (Lewinski et al. 2019). The classes for a complete map of Europe are the following: 
 

- Artificial surfaces and constructions; 
- Cultivated areas; 
- Vineyards; 
- Broadleaf tree cover; 
- Coniferous tree cover; 
- Herbaceous vegetation; 
- Moors and Heathland; 
- Sclerophyllous vegetation; 
- Marshes; 
- Peatbogs; 
- Natural material surfaces; 
- Permanent snow cover; 
- Water bodies. 

 
At a larger spatial resolution (100m) and a global scale, the institute VITO (short for Vlaamse Instelling 
voor Technologisch Onderzoek) has released new global land cover maps (Copernicus, 2019) (VITO, 
2019) based on Proba-V optical data (a medium resolution satellite, with a native resolution at 300m and 
a 2 days revisit time) merged with S-2 and S-1 data in order to compensate for gap left by clouds - 
especially in the Intertropical Convergence Zone, known for its very strong cloud cover. Classes are 

http://osr-cesbio.ups-tlse.fr/~oso/
http://osr-cesbio.ups-tlse.fr/~oso/
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environment-oriented in order to provide better monitoring for biodiversity preservation and a first 
validation put the accuracy at 80%. Some of those classes can be expressed as fractional cover layers, 
and are: 

- Forest; 
- Shrubland; 
- Herbaceous vegetation; 
- Moss and Lichen; 
- Bare/Sparse vegetation; 
- Built-up; 
- Cropland; 
- Snow and Ice; 
- Permanent inland water bodies; 
- Seasonal inland water bodies. 

 
VITO’s remote sensing team had already begun to work earlier on optical and SAR data fusion and 
released a map of Belgian types of culture over the whole country (Van Tricht, Gobin, Gilliams, & I., 
2018). 

2.3.5.4 Toward CLC+ 

The Environment Information and Observation Network (EIONET) Action Group on Land monitoring in 
Europe (EAGLE Group) has been tasked by the EEA to develop the design and technical specifications of 
the second generation of CLC products. Consultations with various stakeholders have taken place and 
several preliminary versions of those specifications have been released before being refined by the EEA 
and definitively released in the fresh ITT EEA/DIS/R0/19/012 for the CLC+ Backbone. The annex 7, 
“Technical specifications for implementation of a new land-monitoring concept based on EAGLE – D5: 
Design concept and CLC+ Backbone, technical specifications, CLC+ Core and CLC+ Instances draft 
specifications, including requirements review”, has been used in the second phase as a guidance to 
create New Land Cover prototypes approaching the CLC+ Backbone products, while remaining in the 
boundaries of ECoLaSS project scope. 
 
Several key requirements have been identified, in particular a backward compatibility with CLC for the 
new products, which should be produced using the latest state-of-the-art concepts and developments to 
fulfill user requirements. This led to the design of 4 interlinked elements: 

- CLC+ Backbone: spatially detailed, in vector format providing the geometric structure of the 
landscape, complemented by raster data 

- CLC+ Core: Multi-use grid database repository to be populated with various LC/LU ancillary data 
from CLMS and other sources 

- CLC+ Instance: A derived grid product from CLC+ Core, which can be tailored at will for different 
types of application 

- CLC+ Legacy: One of the instances (raster and vector) that can be derived from the CLC+ Core 
database, populated with ancillary data to retrieve the 44 classes from CLC 

 
The CLC+ Backbone, which is the main focus of the report, is composed of: 

- A 10*10m2 raster; 
- A vector product with a MMU of 0.5ha. 

The envisioned methodology for the second phase is to follow the ITT requirements as closely as 
possible, using Sentinel datasets as main satellite image sources. Further details are discussed in the 
section 3.3.5. 
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As mentioned as a draft section in this ITT, the next step, the CLC+ Core, will be presented in a new 
format, between raster and vector shapes: a GRID-based information system. Where each pixel of a 
raster is classified, i.e. assigned a single particular LC, the grid cells can be characterized by how much it 
contains of each LC or other information. An example can be seen on Figure 2-14. 

 
The creation of a pan-European HR LC layer will be obtained by superposing together all the currently 
available layers, in addition to the newly created agricultural layer in this project. 
 
This first superposition step could also be an example of the content expected in a GRID format product 
based solely on the HRLs. It is expected that the grid size should be for example 10 by 10m, below the 
MMU of the grid, that could be 0.5ha or lower to match the CLC+ Backbone product specifications. At 
the moment, the CLC+ Core is expected to be populated with: 

- CLC+ Backbone; 
- HRLs (not only LC information, but also parameters such as tree density or sealing degree); 
- Hot Spot monitoring (Urban Atlas, Natura 2000, Riparian Zones); 
- Any other relevant datasets: CLC, LPIS, OSM … 

 

Figure 2-14: - Figure extracted from the ITT EEA/DIS/R0/19/012 - caption can be read as: " CLC with a 1 km 

raster/grid superimposed (top) illustrating the difference between encoding a particular unit as raster pixel 

(centre) or a grid cell (bottom). “daa” is a Norwegian unit: 10 daa = 1 ha." 
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It should be noted that, to display such GRID interactive format, an online access to a server and its 
database is required – this cannot be provided as deliverable in the framework of this project. 
 
The next step, which consists in merging the superimposed layers and can be presented as a raster, 
constitutes an opportunity to enforce a logical consistency between the current and upcoming thematic 
products, which are being produced independently, without requiring post-processing to ensure the 
spatial and temporal coherence. 
 
No testing or benchmarking is required to produce this fused layer, which is does not require 
classification methodology, therefore details of the implementation are provided directly in the WP45 
report [AD10]. 

 
The most important constraint for those new LC products lays in the consistency and continuity of those 
with the previous LC products. 
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2.4 Accuracy assessment principles 

This section presents the overarching principles regarding validation procedures in the ECoLaSS project 
prototypes assessment. These guidelines are taken as reference, to be followed in all implementations in 
phase 2 for consistency reasons across the different thematic topics, although are further developed 
where needed, depending on the specifics of each land cover type. The sampling design and statistics 
described below are common practice in remote sensing applications and land cover studies. Detailed 
descriptions on computations and background can be found in many papers (e.g., Pontius and Millones 
2011, Congalton and Green 2009, Gallego 1995 and 2004, Foody and Arora 1997).  
 
This guideline shall contribute to harmonize the ECoLaSS accuracy assessment approaches. It shall 
support a standardized presentation of the accuracy results and, in that way, facilitate an evaluation of 
the various outcomes.  
 
Although accuracy assessment design of each testsite will be to a certain extent product-specific, some 

basic rules need to be respected that will be laid down in this section. In general, the assessment of each 

ECoLaSS product’s accuracy shall fulfil the basic components of an accuracy assessment and shall 

describe:  

(i) sampling design for selecting the reference sample;  

(ii) response design for obtaining the reference land-cover classification for each sampling unit; 

and  

(iii) thematic accuracy assessment carried out. 

 

(i) Description of Sampling design and stratification approach 

Stratification and sampling design for each product shall be defined by describing:  

 the Samling frame:  

 

Recommendation: A probability sampling design based on random sampling techniques is 

recommended for the ECoLaSS project for its objectivity. Categories included are simple random, 

stratified random, clustered random and systematic designs. The validation approach preferred 

should combine systematic and stratified approaches in order to benefit from the advantages of 

both by allocating a pre-defined number of samples per land-cover class within a regular grid. In that 

way, the geographical spread of the samples is guaranteed.  

 

 

Figure 2-15: Simple random (left) and random systematic (right) sampling designs 
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 the Sample Unit:  

 

Recommendation: As sample unit, point samples are considered as most applicable. Areas may be 

also used in specific cases, when the geometry of mapped objects needs to be assessed. 

 

 the Sample Size:  

 
Recommendation:The number of samples used to assess the accuracy of a product may be 
calculated as a function of a class’s areal proportion in the geographic reference area. In case of 
small strata, the sampling grid may be systematically densified in order to enable a sufficient number 
of available grid points for each stratum. Further, sample positions located directly at (often fuzzy) 
object boundaries should be avoided. For that reason, a minimum distance to a polygon boundary 
shall be applied. 
 
The required minimum number of sample units per stratum is generally dependent on the number of 
thematic classes, the spatial extent of the stratum, the expected acceptable error rate and the 
required precision level (i.e. width of the confidence intervals). A suitable sample size for each 
stratum (i.e. thematic class) may be estimated based on the expected acceptable error rate. The 
standard error of the error rate can be calculated as follows (Büttner et al. 2012): 
 

𝜎ℎ =  
𝑝ℎ (1−𝑝ℎ )

𝑛ℎ
, Equation 1 

 

where nh is the sample size for stratum h and ph is the expected error rate.  
 
For calculating the sample size nh the equation can be converted so that the sample size is a function 
of ph and the desired standard error 𝜎ℎ : 
 

𝑛ℎ =
𝑝ℎ (1−𝑝ℎ )

𝜎ℎ
2 . Equation 2 

 
For the ECoLaSS products, if there was an expected error rate is 15%, a minimum of 51 samples per 
stratum is necessary with a maximum 5% standard error. Such error rates are expected for 
grasslands for instance on a general basis for the status layers, whereas a higher accuracy (over 90% 
is the standard for forest layers), and it can be assumed that a lower accuracy is expected in the 
change products, totally reliant on the corresponding reference layer, or the crop types (more 
complex legends, with more classes than the binary presence/absence products). This is also on a 
general basis in line with the accuracy specifications for the HRL products (only the threshold for 
grasslands for example was applied in the past at the EU extent and it is now applied at the 
biogeographic region).  

 

 the Stratification Approach:  

 
Recommendation: The stratification approach shall focus on omission/commission strata, where 
omission strata are understood as areas with a higher likelihood of comprising omission errors, and 
commission strata accordingly have a higher likelihood of comprising commission errors. The 
number of strata will depend on the availability of reference data for defining low- or high-
probability strata. Existing Copernicus LC/LU classification results like e.g. HRLs, CLC, Riparian or 
Natura2000 or other information sources may be used for stratification purposes. 
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(ii) Response design: 

Data used as independent data source to assess the accuracy of ECoLaSS products shall be documented. 

 

Recommendation: Reference information shall be obtained by using data of higher spatial resolution and 

quality than the production data. The reference data are independent additional in-situ and ancillary 

data providing more spatial detail and better landscape context to the assessment than the HR imagery 

used in the ECoLaSS production. Further details regarding the usage of the ESA DWH data are provided in 

D12.1 “DWH Use for 2017/2018/2019”. Possible reference data are: 

 LUCAS point data: Reference labels obtained by visual re-interpretation of LC/LU at point level, 

while respecting the product specifications in terms of MMU and MMW and the underlying class 

definitions.  

 Copernicus LC/LU data like HRLs, CLC, Riparian, Natura2000: visual cross-check of derived 

information shall be applied in order to avoid error propagation and to consider land cover 

changes in case of differing time stamps 

 VHR_IMAGE_2018 datasets, in combination with the previous VHR_IMAGE_2015 imagery 

applied during visual interpretation of sample points 

 Further in-situ data: All existing and accessible complementary data that is of superior quality 

and matches in terms of spatial, thematic and temporal resolution, including photos, national 

LC/LU data, biotope maps and topographic data. 

 National and regional web map services (RGB and/or CIR imagery with varying spatial 

resolution). 

 
(iii) Thematic accuracy assessment 

The final accuracy assessment shall be described based on the following metrics: 

 Error Matrix:  

 
Recommendation: Unequal sampling intensity resulting from the stratified systematic sampling 
approach should be accounted for by applying a weight factor (p) to each sample unit based on the 
ration between the number of samples and the size of the stratum considered. The weighing factor is 
inversely proportional to the inclusion probability (i.e., the probability that a pixel will be included in 
the sample) of samples from a given stratum. Within a geographic stratum, the inclusion 
probabilities of all sample units (u) are the same (π*uh is constant):  

                          Equation 3 
Where i and j are the columns and rows in the matrix, N is the total number of possible units 
(population) and π is the sampling intensity for a given stratum. �̂�𝑖𝑗  is computed for all cells of the 

error matrix.  
To combine sample data over several strata, a weighted estimator of the error matrix is required to 
account for the different inclusion probabilities among strata. The estimation weight is the inverse of 
each sample unit´s inclusion probability, and the proportion of area for each cell of the error matrix is 
estimated by formula 3. Else, true map accuracies might result over or under estimated.  
 

 Overall accuracy (OA): 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 59| Issue/Rev.: 2.0 

  

 
Recommendation: The OA is measured by the sum of the diagonal of the weighted confusion matrix 
divided by the total number of validated points:  
 

𝑂𝐴 =
1

 𝐶
  𝐶𝑖=𝑗𝑖                            Equation 4 

 

 User’s accuracy (UA): 

 
Recommendation: The UA is a measure of the commission error (whereby 100%-UA=commission 
error):   
 

𝑈𝐴𝑗  =
1

 𝐶𝑖,𝑗𝑖
  𝐶𝑖=𝑗 ,𝑗                      Equation 5 

 

 Producer’s accuracy (PA):  

 
Recommendation: The PA is a measure of omission error (whereby 100%-PA=omission error):  
 

 𝑃𝐴𝑖  =
1

 𝐶𝑖,𝑗𝑗
  𝐶𝑖,𝑗=𝑖                         Equation 6 

 

 Confidence interval.   

Recommendation: The standard error is calculated for each stratum and an overall standard error is 
calculated based on the following formula (Equation 7):  
 

𝜎 =   𝑤ℎ
2 .𝜎ℎ

2                                       Equation 7 

 
In which 𝑤ℎ  is the proportion of the total area covered by each stratum. The 95% confidence 
interval is +/- 1.96. 𝜎. 

 

 F1 score statistic: 

 
Recommendation: The F1 score is computed per class, as the harmonic mean between precision (i.e., 
User accuracy) and recall (i.e., producer accuracy), where an F1 score reaches its best value at 1 
(perfect precision and recall) and worst at 0. 
 

 

 Kappa statistic: 

Recommendation: Kappa is a measure of the difference between the actual/chance agreement 
between provided reference data and an automated classifier/random classifier. Although criticized, 
it is a widely used statistic useful for benchmarking purposes.  
 
Recommendation:  

𝑘 =
𝑝0  −𝑝𝑒)

1−𝑝𝑒
= 1- 

1 −𝑝𝑜)

1−𝑝𝑒
 Equation8 

 
In which 𝑝0 is the relative observed agreement among raters (identical to accuracy) and 𝑝𝑒 is the 
hypothetical probability of chance agreement, using the observed data to calculate the probabilities 
of each observer randomly seeing each category. Kappa value is 1 when there is complete 
agreement. On the contrary, 𝑘 is 0 if there is no agreement among the raters other than what would 
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be expected by change (as given by 𝑝𝑒). The statistic value can be negative, implying that there is no 
effective agreement between the two raters or the agreement is worse than random.  
 

In addition to these metrics, the look and feel of the prototypes is verified. The expert knowledge of the 
region and land cover are a qualitative accuracy assessment that even though not resulting in a 
quantitative measure, is essential to land cover classification products. Each prototype is presented with 
its associated probability layer: for each pixel, the percentage on the classification choice is given. This is 
considered a pixel based quantitative quality metric (i.e., spatialized reliability).    
 
In the case of the change products, the sampling for validation focuses on the change. Therefore, a 
stratified approach is to be based on the initial detected change areas from the overlay of the 
corresponding status layers (e.g., 2017 and 2018 products). Based on this fit-for-purpose calibration 
dataset, the relative magnitude of actual changes and, thus, the magnitude of errors (omission and 
commission from the previous and new time step) are estimated. The estimates obtained for the 2017-
2018 change layer provides a basis to target the reclassification of the 2017-2018 changes into real 
changes or omission and commission errors for 2017 and 2018, respectively. Statistical analysis is 
performed and if required, reclassification of the status layer is to be considered. Priority is given to an 
adjustment of the classification threshold based on the class probabilities. However, where this does not 
lead to satisfactory results a re-processing of the readily computed time-features and, if necessary, the 
original input imagery is considered. The description and implementation of the accuracy assessment of 
change products is reported in the final issue of WP34 deliverable on methods compendium of time 
series analysis for change detection [AD08]. 
 
Last, INSPIRE compliant metadata xmls files complete the ECoLaSS prototypes data delivery [AD10, AD11, 
AD12, AD13, AD14].   
 

3 Methods 

 
This chapter addresses the testing and benchmarking of the candidate methods identified in chapter 2. 
The benchmarks concerns first the inputs of classification (section 3.1), i.e. automated reference 
sampling, compositing methods, indices and time features, and second the time series classification 
methods by thematic field (section 3.3). For each benchmark, the candidate methods and the 
benchmarking criteria are described in detail. Then, the implementation and results of benchmarking are 
presented. Finally, main outcomes and recommendations of the analysis are summarised.  
 

3.1 Input data 

During the last decade, supervised classification techniques have replaced unsupervised classification 
techniques as the prevalent technique for large-area LC/LU mapping with time series data (Gómez et al. 
2016). In order to train an accurate supervised classifier the two most important components are a 
suitable reference data set and a powerful set of discriminative features.  
Commonly used supervised classification algorithms cannot cope with the irregular time series of remote 
sensing data over large areas. This occurs particularly between neighboring satellite sensor footprints 
due to different acquisition dates and, in case of optical imagery, within one scene due to clouds and 
cloud shadows (3.1.2). In order to transform the data to input features that can be used directly in the 
classification, the original time series data is transformed to temporal-spectral metrics, so called time 
features (3.1.3). Time features do not suffer from missing values and can capture the temporal-spectral 
characteristics of a given pixel for the separation of land cover classes.  
The other important component for training an accurate supervised classification model is the labeled 
training data, a set of data points with known location and land cover class in the area of interest. 
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Nowadays, a lot of ancillary data is available that facilitates sample collection for training data (Gómez et 
al. 2016), e.g. field crop type data that is provided by European farmers in order to receive subsidies. 
Also, forest and leave type sample data can be derived from existing land cover maps. Although most 
land cover classes are relatively persistent over time, the sample quality can still be improved by suitable 
reference sampling techniques (section 3.1.1). 
 

3.1.1 Automated reference sampling 

For persistent land cover classes, such as forest, grassland, arable land or impervious surfaces, it is a 
common approach to automatically sample training locations and labels from outdated maps. This 
information can be combined with the predictors or features extracted from up-to-date remote sensing 
image data, to derive a new training dataset which can be used to produce a new up-to-date LC/LU map. 
Obviously, such automatically generated training samples contain as well wrong labels due to (i) LC 
change that occurred between the outdated map and the up-to-date imagery, or due to (ii) samples 
drawn from stable but in the outdated map incorrectly classified regions. Such erroneously labeled 
samples can be considered outliers in the training dataset, due to the unusual feature patterns. Such 
approach has been used in the sampling for the Forest and Grasslands prototypes in ECoLaSS, applying 
outlier detection and also expert-knowledge in some case as required. Quality of samples and reliability 
of reference data sources are essential to classification processes, evermore in automation of workflows.  
 
So far, most approaches try to minimize the amount of outliers by applying a negative buffer before 
performing the spatial sampling and therefore, to avoid the selection of samples at LC class borders 
(according to the outdated map) and by excluding very small polygons (Radoux et al. 2014, Inglada et al. 
2017). This has also been applied in sampling for the ECoLaSS test and demosites. The assumption is that 
state-of-the-art machine learning classification algorithms can cope with the remaining amount of 
outliers. However, it is still desirable to reduce the number of outliers as much as possible in order to 
obtain the best possible model quality. That is particularly relevant when a larger number of wrong 
samples remain in the sampled dataset with the above methods.  
 
Since outliers are a common problem in many real world datasets, several machine learning algorithms 
exist to solve the problem. The selection of potential methods and analysis of their performance for 
additional data cleaning has been evaluated and is shown in the following subsections. 
 

3.1.1.1 Description of candidate methods 

For the problem of cleaning automatically generated training datasets for large area remote sensing 
classification problems, the algorithms should be efficient for large sample sizes, should work well for 
high-dimensional datasets and should deal with complex unknown distributions. The Isolation Forest 
(iForest) is a promising state of the art approach that fulfils all these properties (Liu et al. 2008). 
Additionally, it does not require the features to be scaled and is not very sensitive to parameters leading 
to overfitting or underfitting. It can be assumed that, as in the case of the frequently used Random 
Forest classifier (Breiman 2001), good results can be achieved with default parameters. The latter aspect 
is particularly important for the outlier detection because, in contrast to the case of a supervised 
classification task with reliable labels, tuning of parameters would be a non-trivial task. 
 
The performance of the iForest was compared to the One-Class Support Vector Machine (OCSVM) 
(Schölkopf et al 1999), a Support Vector approach that is suitable for outlier detection with high 
dimensional datasets and complex non-linear class distributions. It is worth mentioning that the Support 
Vector Data Description (SVDD), another frequently used method for outlier detection, is similar to the 
OCSVM an when used with a Radial Basis Function Kernel gives the same solution than the OCSVM (Tax 
& Duin 2004). 
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3.1.1.2 Benchmarking criteria 

The most important benchmarking criteria is the error rate of the outlier detection approach, i.e. the 
fraction of false positives (outliers that are not identified as such) and false negatives (inliers that are 
identified as outliers). Apart from the threshold-specific performance, it is worth to investigate 
threshold-independent performance of an outlier detector. Most outlier performance models are able to 
return a continuous valued decision function instead of a binary decision or prediction (inlier/outlier). 
The binary decision is simply the result of a (default) threshold applied on the continuous decision 
function. Thus, given a threshold, all samples with decision function values larger than the threshold are 
considered inliers and all samples with decision function values smaller than the threshold are 
considered outliers. Here the kappa coefficient is used as threshold-specific performance measure. A 
common threshold-independent performance measure is the area under the ROC (Receiver Operation 
Characteristic) Curve (AUC). It can be considered a relative measure for the potential outlier 
detectability. In other words, the higher the AUC the better the achievable outlier detection given that 
the suitable threshold can be found. Taking into account both threshold-specific and threshold-
independent performance measures is important to get more comprehensive picture of the strength and 
weaknesses of an approach. For example, let us consider the threshold-specific results of an iForest 
result with a non-optimal-threshold and OCSVM result with a non-optimal-threshold. It is possible that 
the OCSVM is better than the iForest. At the same time it is possible that the iForest is better than the 
OCSVM given the most suitable threshold is used for both. In such a case, it can be eventually be 
concluded, that the threshold selection algorithm has to be improved but not the algorithm used to 
derive the continuous decision function values. Thus, considering threshold-independent and threshold-
specific results allows a more comprehensive assessment of the approaches and strengthens the 
conclusions and potential improvement measures to be taken eventually.  
 
Most outlier detection algorithms require a user-defined parameter that defines the assumed fraction of 
outliers in the data set (Tax 2001). Of course, in many applications it is not only unknown which are the 
outliers in the dataset but also how many outliers are in the dataset. Estimating the fraction of outliers 
from the data is a difficult problem and needs to be addressed in the future. By now, an important 
benchmarking criteria to be investigated is the sensitivity of an algorithm with respect to the assumed 
fraction of outliers, i.e. how much does the detectability performance degrade in case the user-defined 
outlier fraction assumption deviates from the true fraction of outliers. 
 
It is worth mentioning that in case of the iForest only one model needs to be trained for different 
assumed outlier fractions. The assumed outlier fraction only influences the value of the threshold, which 
is used to convert the decision function to binary decisions. In case of the OCSVM the assumed fraction 
of outliers also influences the decision function itself. Thus, a new model needs to be trained whenever 
another fraction of assumed outliers is to be considered. 
 
Other relevant criteria for the selection of a suitable approach are (i) the ease of use of an algorithm, i.e. 
the number of influential parameters and its sensitivity to parameters and if the input data needs to be 
scaled, and (ii) the suitability of the algorithm for large datasets, i.e. its computational complexity. 

3.1.1.3 Implementation of benchmarking 

As mentioned above, the fraction of outliers in the dataset is required to be set as a user-defined 
parameter. In order to investigate the sensitivity of this parameter with respect to the true amount of 
outliers several datasets with different outlier fractions have been created from a real dataset. This 
dataset contains the classes non-forest (260 polygons à 9 pixels), broadleaf forest (100 polygons à 9 
pixels) and coniferous forest (104 polygons à 9 pixels). The samples of each class have been 
contaminated by a growing fraction of outliers – defined in 10 steps by increasing the fraction by 0.05 for 
each step (0.05, 0.1, 0.15,…, 0.5) – from the other classes. For example, in order to create a dataset with 
a fraction of 0.1 contaminated samples, the features of randomly chosen 10 % of the coniferous 
polygons have been replaced by the features of randomly chosen 10 % polygons of the broadleaf forest 
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and non-forest polygons. This results in 300 training data sets for the three different classes and the 10 
outlier fraction steps. In order to reduce the statistical uncertainty of the results five replications of 
different polygons are switched. As a consequence, 1500 datasets were generated with known outlier 
fractions and outlier samples on which the outlier detection approaches have been tested.  
 
In the current analysis, only the fraction of assumed outlier parameters (called the contamination 
parameter) was changed when setting up the iForest and OCSVM (called the nu parameter) models. The 
other parameters have been set to sensible default values. Particularly, the OCSVM is trained with an 
RBF kernel and gamma parameter corresponding to 1/#Features, where #Features is the number of 
features. As mentioned above, the nu parameter is not investigated and therefore not varied. For the 
iForest, the number of samples and features to draw from, for constructing a base estimator of the 
forest, is set to 256 and #Features. 

3.1.1.4 Results of benchmarking  

As mentioned above, the outlier detection approaches are evaluated based on the AUC, a threshold-
independent performance measure, and the kappa coefficient, a threshold-specific performance 
measure.  
 
Comparing the threshold-independent accuracies (AUCs) grouped by class (non-Forest, broadleaf, 
coniferous) and the methods (iForest, OCSVM) reveal the following interesting insights (Figure 3-1). First, 
in case of the Non-Forest class both methods are hardly better than a random predictor since an AUC 
value of 0.5 corresponds to a random prediction. Instead, the AUCs for the other two classes are much 
higher, thus the outliers can be distinguished from inliers. Distinguishing outliers from inliers is more 
accurate in case of the coniferous forest type compared to the broadleaf forest type. For both forest 
classes the performance of the iForest is significantly better than the one of the OCSVM. Particularly, the 
mean and median AUCs are higher and the variation is lower. The high variation of the OCSVM AUCs in 
case of the coniferous forest is of particular interest and might be related to a higher parameter 
sensitivity of the OCSVM. 

 

Figure 3-1: Boxplots of AUC values given the class and outlier detection approach achieved over all respective 

experiments, i.e. varying random replications (5), outlier fractions (10) and assumed outlier fractions (10). Thus, 

one boxplot is constructed from 500 values. 

In case of both methods and all classes the AUC values decrease with increasing outlier percentages (i.e. 
the outlier fraction multiplied with 100 %) (Figure 3-2). The figure also shows that in case of the iForest, 
the AUC is constant over the percentage of assumed outliers. This is the case because the AUC is a 
threshold independent measure that is calculated based on (i) the decision function values and (ii) the 
above described property of the iForest, stating that the decision function is not influenced by the 
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percentage of assumed outliers (but only the binary decision). An interesting pattern of the OCSVM is 
that the AUC increases with an increasing percentage of assumed outliers.  

 

Figure 3-2: Mean AUC for the three classes non-forest, coniferous and broadleaf forest (from top to bottom), the 

outlier detection approaches iForest (left) and OCSVM (right) dependent on the percentage of assumed outliers 

(x-axis) and percentage of outliers (y-axis). Each value is the mean AUC of the five random replicates. 
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The AUC revealed interesting insights in the potential outlier detectability for the different methods and 
datasets. However, for the actual outlier detection the decision function needs to be converted in binary 
decision. In case of the OCSVM, where the fraction of assumed outliers is used to train the decision 
function model, the threshold of 0 is used standardly for the conversion. In case of the iForest, where the 
fraction of assumed outliers does not influence the decision function, the threshold is selected such that 
the fraction of assumed outliers is below the threshold. Thus, the threshold is the quantile of the 
decision function values corresponding to the fraction of assumed outliers. 
 
With the decision function values converted to binary predictions (inlier and outlier) and the true class 
membership it is possible to derive a confusion matrix containing the classification performance metrics. 
Cohen’s kappa coefficient as threshold-specific performance measure, shows some similar patterns as 
the threshold-independent AUC (Figure 3-3). The outliers in the coniferous forest class can be better 
identified than in the broadleaf forest type. In the non-forest class, the outliers cannot be identified. It is 
more important for an accurate outlier prediction that the fraction of assumed outliers does not deviate 
strongly from the fraction of outliers. This is particularly true for the two forest type classes and the 
iForest. In case of both forest type classes and both outlier methods, it seems to be favorable – with 
respect to the to the kappa coefficient – to assume a higher fraction of outliers as it is present in the 
dataset.  
 
It has been argued before that it cannot always be assumed that the percentage of outliers is known in 
all applications. For example, when reclassifying up-to-date remote sensing data with reference samples 
derived from an outdated map there the following two sources of information can help to estimate 
outliers of the dataset: first, the accuracy assessment of the outdated map and second, the expected 
land cover change between the target and non-target classes. However, it can also be shown that the 
histogram of the decision function values can give insights in the percentage of outliers. Figure 3-4 shows 
the decision value function histograms with different outlier percentages. It is remarkable that with an 
increasing number of outliers the histograms develop from unimodal and right skewed histograms (with 
the outliers at the left side) to a bimodal histogram. Thus, as long as the target class is well separable 
from the rest of the classes (i.e. the outlier samples) the outliers will cluster in a distinguishable mode at 
the left of the histogram and are separated by a gap between the outliers on the left and the inliers on 
the right of the histogram. In practice this observation can be helpful when automatically or semi-
automatically generating reference samples. 
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Figure 3-3: Mean kappa coefficient for the three classes non-forest, coniferous and broadleaf forest (from top to 

bottom), the outlier detection approaches iForest (left) and OCSVM (right) dependent on the percentage of 

assumed outliers (x-axis) and percentage of outliers (y-axis). Each value is the mean kappa coefficient of the five 

random replicates. 
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Figure 3-4: Histogram of the iForest decision function values for the coniferous forest class containing different 

percentages of outliers (see subplot title). The black vertical line shows the location of the threshold when the 

assumed outlier percentage corresponds to the actual outlier percentage. Given this threshold the colours reveal 

the true positives (TP), i.e. inliers predicted as inliers, true negatives (TN), i.e. outliers predicted as outliers, false 

positives (FP), i.e. outliers predicted as inliers and false negatives (FN), i.e. inliers predicted as outliers. 

 
As a consequence of the analysis the iForest turns out to be a powerful and suitable method for the 
detection of outliers in an automatically sampled reference datasets. Its advantages compared to the 
OCSVM are: 
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 High potential separability (AUC) when using default parameters. This is very important since an 
algorithm that is sensitive to parameters and needs carful tuning is not suitable for outlier 
detection because there are no known inlier/outlier labels to tune the model. 

 The fraction of assumed outliers does not influence the decision function values.  

 Scaling the input features is not necessary (according to the literature).  
 

Suitable for high-dimensional and large sample datasets (according to the literature). Particularly, the 
algorithm can easily be parallelized since each base learner can independently be processed. 
 

3.1.1.5 Summary and conclusions 

It has been shown that the iForest, which is able to separate outliers from inliers, exhibits additional 
important properties valuable for an outlier detection method. It is therefore suitable to be used for such 
purposes in future applications, e.g. where training samples are sampled from outdated LC maps and 
used to produce up-to-date maps.  
 
The problem that the fraction of outliers in the dataset needs to be known can be approached by 
analyzing the histogram of decision function values. If the class of interest is relatively well separable and 
due to the fact that the assumed outlier fraction does not change the decision function values, a 
reasonable strategy, to define the threshold, is by analyzing the decision function values with a suitable 
thresholding approach. A review of potential thresholding approaches and a starting point for further 
research in this direction is the comprehensive review by Sezgin and Sankur (2004). Another approach, 
which would not require the binary inlier/outlier decision would be to use the decision function values as 
instance weights when using the automatically sampled reference data for training a new machine 
learning classifier. Doing so, the samples that are more likely outliers are assigned to having less weight 
and become less influential during the model building. In other words, instances (i.e. reference samples) 
that are more likely inliers (high decision function value) are more influential in the model training than 
instances that are more likely outliers (low decision function values). 
 
Further research is also required in order to better understand why the outlier detection of the non-
forest class failed. It has to be noted that compared to the other two considered classes, this class is an 
extremely heterogeneous composition of a wide variety of different classes. It is possible that the 
relatively small amount of reference samples used in this study is not able to well represent such a 
complex distribution and that the outlier detection can be assumed to improve with a much larger 
amount of reference samples. Further research in that direction is required in order to increase the 
knowledge about the potential as well as limitations of outlier detection for different types of classes or 
distribution characteristics. 
 

3.1.2 Compositing methods on S-2 time series and PROBA-V compositing 

Spatial continuity and consistency in large scale mapping are important criteria in global and regional 
vegetation monitoring, land cover change analysis, and land cover mapping activities. The following 
sections explore methods to reduce heterogeneity in the imagery (different orbits, acquisition dates, 
cloud/shadow contamination) through temporal synthesis of daily optical satellite observation, i.e. 
compositing. Various algorithms have been developed to produce a cloud-free synthesis from optical 
time series, each correcting for angular effects and atmospheric variations differently. In this 
benchmarking, two main categories of compositing are selected: time interval algorithms and feature-
based algorithms. 
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First, this section describes the candidate methods to be compared (3.1.2.1). Second, the benchmarking 
criteria are detailed (3.1.2.2). Then, the implementation and benchmarking results are presented and 
discussed (3.1.2.3). Finally, the main outcomes of the analysis are summarized in section 3.1.2.4.  

3.1.2.1 Description of candidate methods 

This benchmarking assesses the performance of various compositing approaches applied on land surface 
reflectance of Sentinel-2 images. Three methods considered are time interval algorithms (Maximum 
Value Compositing on NDVI, Mean Compositing and Weighted Average Compositing) and two are 
feature-based algorithms (Knowledge-based Compositing and Quantile Compositing). 
 

Maximum Value Composite on NDVI (MVC NDVI) 

This best pixel method selects, for a given compositing period and on a pixel-by-pixel basis, the date of 
the valid pixel which has the highest NDVI (Holben, 1986). Reflectance values of each spectral bands are 
retained for each pixel location according to the date selected.  
 

 pixel value = reflectance value at the date where the NDVI of the pixel is the maximum  

                       for the compositing period, for each spectral bands 

 

Mean Compositing (MC) 

This method treats all cloud-free reflectance values as estimates of the signal, and any remaining 
variability after cloud removal as an unpredictable noise. It consists of averaging all valid reflectance 
values for each pixel and each spectral band acquired during the chosen compositing period (Vancustem 
et al., 2007a). The MC algorithm need to fulfill three conditions to be relevant from a statistical point of 
view: (i) an efficient quality control procedure able to discard any odd value, (ii) an accurate geometric 
correction, and (iii) a compositing period which is a multiple of the view zenith angle (VZA) cycle of the 
instrument. 
 

 pixel value = mean of reflectance values of all valid L2A in the compositing period, for the   

                       corresponding pixel, for each spectral band 

 

Weighted Average Compositing (WAC) 

This method averages all cloud-free reflectance values acquired during the compositing period giving 
more weight to the images closer to the middle of the compositing period in order to enhance the 
fidelity to the central date (Hagolle et al., 2015). The weighting must be light enough so that it does not 
finally select only one date, and finally looks like a best pixel method. The weight is computed for each 
L2A image based on the time difference between the L2A date and the central date of the time series.  
 

 pixel value = weighted average of reflectance values for each L2A in the compositing  

                       period, for each spectral band. The weighting strategy gives a weight of 1 to  

         the central date, and of 0.5 to the first and last date of the compositing  

         period. Weights of L2A images between the beginning/end and the middle  

        of the composite are interpolated. 

 

Knowledge-Based Compositing (KC) 

This feature-based method extracts relevant spectral and temporal features at specific events of the 
growing season (Matton et al., 2015; Waldner et al., 2015; Lambert et al., 2016). These features are 
defined according to generic characteristics of crop growth: (i) the growing of crops on bare soil after 
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tillage and sowing; (ii) a higher growing rate than natural vegetation types; (iii) a well-marked peak of 
green vegetation; and (iv) a fast reduction of green vegetation due to harvest and/or senescence. Five 
distinct remote sensing stages in the crop cycle are defined at the pixel scale: (i) the maximum value of 
red; (ii) the maximum positive slope of the NDVI time series; (iii) the maximum value of NDVI; (iv) the 
maximum negative slope of the NDVI time series; and (v) the minimum value of NDVI. The final spectral-
temporal features corresponded to the reflectance values observed at these stages. A Whittaker 
smoothing is first performed on the L2A time series and NDVI time series prior to the feature extraction.  
 

 pixel value - Max. Red = reflectance value at the date of the time series with higher value  

         in red band, for each spectral band 

 pixel value - Max. NDVI = reflectance value at the date of the time series where NDVI is  

            the highest, for each spectral band 

 pixel value - Min. NDVI = reflectance value at the date of the time series where NDVI is  

        the lowest, for each spectral band 

 pixel value - Max. positive slope NDVI = reflectance value at the date of the time series  

            where the gradient of NDVI is the highest, for each spectral band 

 pixel value - Max. negative slope NDVI = reflectance value at the date of the time series  

            where the gradient of NDVI is the lowest, for each spectral band  

 

Quantile Compositing (QC) 

This feature-based method proposes statistical measures from a multi-temporal stack of good quality 
satellite observations. Metrics consist of measures derived from all L2A observations. A 0-10 and a 90-
100 interval quantile means (mean of all valid observations between the defined thresholds of the 
quantile) of reflectance values are computed for all spectral bands, based on the distribution of valid 
NDVI along the time series. 
 

 pixel value - Quantile 10 = mean of the reflectance values for the dates of the time series  

                                               with the minimum NDVI values (for each pixel the 10 % of  

                                               lower NDVI values from the time series are used), for all  

                                               spectral bands 

 

 pixel value - Quantile 90 = mean of the reflectance values for the dates of the time series  

                                               with the maximum NDVI values (for each pixel the 10 % of  

                                               higher NDVI values from the time series are used), for all  

                                               spectral bands 

 

3.1.2.2 Benchmarking criteria 

Five performance criteria are used to assess and compare the compositing outputs. The first criterion is a 
qualitative analysis, consisting in a visual examination of the composites, and the others are quantitative 
analysis (temporal consistency, fidelity to medium date image, data gaps and artefacts analysis).  
 

Visual analysis 

A systematic visual examination and comparison of the colour compositions (R:NIR-b8, G:Red-b3, 
B:Green-b2) of the composited products were realized. Qualitative criteria such as the presence of haze, 
speckle effect and spatial consistency are analysed for each composites of the five methods.  
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The MVC, MC and WAC are compared using the same compositing period and frequency, namely 
monthly composites, while KC and QC are compared on the entire time series.  
 

Temporal consistency 

This first quantitative analysis evaluates the spectral consistency over time by studying the temporal 
profiles of the individual reflectance bands coming from stable surfaces for which reflectance is not 
supposed to vary in the time series.  
The samples were carefully selected in order to consider only “pure” land cover pixels. They were 
selected as much as possible in valid and cloud-free area, i.e. not covered by any cloud/cloud 
shadows/ambiguous cloud. Three land cover types were selected: water, roof top and bare soil. These 
three land cover types are represented for the Belgium site, while sufficient areas of roof top for South 
Africa and of roof top and water for Mali couldn’t be find. The samples were manually delineated based 
on very high spatial resolution images (ESRI World Imagery), the 2012 Corine land cover map for the 
Belgium site, and the 2014 NLC South Africa map for the South Africa site. One region of interest (ROI) 
was sampled per land cover type with the following rules: (i) ROIs have to be homogeneous on the 
orthophotos, and (ii) ROIs are selected at the center of land cover features in order to avoid boundaries 
effects.  
 
For each date, mean and standard deviations of reflectance values are computed based on all the pixels 
contained in the ROI, for all spectral bands. Then, in order to better visualize the stability of the over 
time, standard deviation of the ROI mean values are computed comprising all the composites of the time 
series, for all spectral bands. 
 
This analysis is only realized for the three time interval algorithms (MVC NDVI, MC and WAC) as their 
outputs are monthly composites along the time series, allowing a temporal examination, while the 
features-based algorithms outputs are computed on the entire time series. 
 

Fidelity to medium date image 

This second quantitative analysis assesses the fidelity of cloud-free areas of the composites with the 
medium date image (L2A level) of the composite. The statement behind this analysis is that in a perfect 
world, the Level 3A synthesis of the middle of the composite period should be identical to a cloud-free 
Level 2A acquired at that date, if it existed (Hagolle et al., 2015).  
  
As a results, the fidelity criterion is to best mimic the information content of a single cloud-free image 
considered as reference image. It measures the difference between the composite surface reflectance 
value and the L2A surface reflectance value for all the cloud-free pixels, when a relatively cloud-free L2A 
image is available for a date close to the central date of the composite (+/- 8 days). Composites having a 
high fidelity to the central date allow to have a temporally consistent time series.  
 
The following statistics are computed: 

 70 % percentile: Maximum absolute value of the difference between level 3A 
(composite) and level 2A (central date), for the 70% of pixels which have the lowest 
absolute value of difference. 

 95 % percentile: Maximum absolute value of the difference between level 3A and level 
2A, for the 95% of pixels which have the lowest absolute value of difference. 
 

The comparison of this fidelity criterion is realized for the three time interval algorithms (MVC NDVI, MC 
and WAC). The feature-based algorithms (KC and QC) are computed on the entire time series and a 
fidelity to the middle of the time series would not make sense.  
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Remaining proportion of data gaps 

This third quantitative analysis assesses the remaining proportion of data gaps after the synthesis. It 
provides the average value, for all the composites of the time series, of the pixels with no value within 
the image footprint, and divide by the number of pixels which should have been observed if at least an 
image had been completely cloud-free.  
 
 
 
 
 
 
This analysis is achieved on the five compositing algorithms.  
 

Artefacts 

This last quantitative analysis assesses the amplitude of the artefacts observable at the limits of zones 

obtained with the same set of dates. This is assessed by the standard deviation of the average difference 

of reflectance values between pixels at the external borders and pixels at the internal border of the 

contiguous zone. This analysis is achieved on the five compositing algorithms.  

3.1.2.3 Implementation and results of benchmarking 

The benchmarking is achieve on Sentinel-2 cloud-free images. The implementation has been done on the 
test sites in Belgium (tiles 31UFR and 31 UFS), in South Africa (tiles 35JMJ and 35JNJ) and in Mali (tiles 
29PRP and 29PTU). These three sites were chosen because (i) they all cover various land cover types 
needed for the spectral consistency analysis and interesting for classification purpose, and (ii) the 
effects/artefacts of their different cloud coverage can be compared in the compositing outputs. 
 
Composites are generated on a monthly regular basis for the MVC NDVI, MC and WAC along the time 
series. Seasonal composites are generated for the entire period for the KC and the QC (Table 3-1). Table 
3-2 summarizes the compositing periods and tests realized for each method. 
 

Table 3-1. Length of time series per site. 

 
 

Table 3-2. Tests and compositing periods for the composite benchmarking achieved on the five compositing 

methods. 

 

 Residual gaps =  number of pixels in data gaps within image footprint                                                  

                            number of pixels within image footprint 
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3.1.2.3.1 Visual analysis 

In this section, the five algorithms are visually examined. First, MVC, MC and WAC are compared 
together as they are monthly composites, and then KC and QC outputs that represents features 
computed for the entire time series. Finally, drawbacks and advantages of time interval algorithms and 
feature-based algorithms are pointed out.  
 
Figure 3-5 shows false colour compositions of the composited products of the MVC NDVI, MC and WAC 
for the three sites in Belgium, Mali and South Africa. At this scale, no large differences are visible 
between these monthly composites, except that MVC NDVI outputs provide more contrasted outputs 
compared to MC and WAC.  
 

 
Figure 3-5: False colour (b8, b3, b2) monthly composites over the Belgium site (2017-05), Mali site (2016-08) and 

South Africa site (2016-09) of the (a) MVC NDVI, (b) MC and (c) WAC algorithms. 
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Figure 3-6: False colour (b8, b3, b2) monthly composites over the Belgium site (2017-05), Mali site (2016-10) and 

South Africa site (2016-10) of the (a) MVC NDVI, (b) MC and (c) WAC algorithms. 

 
However, when zooming at the field scale, such as in Figure 3-6, strong differences appears. The MVC 
syntheses exhibit a large noise or speckle like effects. This effect is particularly visible for center-pivot 
irrigated crops of the South Africa site. This type of compositing, also known as “best pixel method”, only 
selects one date for each pixel and discards the others. It results in very noisy composites because the 
selected date for adjacent pixels may have been acquired under different acquisition geometries, or may 
be affected differently by a cloud shadow or undetected cloud. In addition, surface reflectance may have 
changed within the compositing period for different dates from one pixel to the other, leading to a noisy 
image. This noise is not observed in MC and WAC composites. They are designed to minimize artefacts 
by selecting the largest number of valid points within the available set of dates. As a result, the possibility 
to observe artefacts when the set of dates changes is reduced. The visual comparison between these two 
methods shows indeed that MC and WAC strategies produce cleaner images than MVC.  
 
MC and WAC show large similarities: it is not possible to discriminate them visually. The main drawback 
of these two methods is the sensibility to artefacts of the cloud mask. This is particularly visible in the 
Belgium site, prone to high cloud cover, in Figure 3-5. If too few images are available (only one or two), 
which is the case with only Sentinel-2A available until July 2017, and if the cloud mask is not performant 
enough, artefacts will be visible in the average compositing methods (Figure 3-7). In this case, borders of 
large clouds are poorly detected, and the remaining haze effects affects the reflectance. Undetected 
cloud shadows lead to more artefacts in the MVC NDVI products, while it is smoothed in MC and WAC 
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composites. Although cloud detection is supposed to be much more accurate when performed at high 
resolution and with a large diversity of spectral bands including the 1.38 µm spectral band able to detect 
thin cirrus cloud, the Sentinel-2 cloud mask presents too many artefacts concerning the delineation of 
clouds borders, the haze and cirrus detection and removal, and the detection of cloud shadows. 
Improvements are necessary to produce composites with sufficient quality for land cover mapping.  
 

 

Figure 3-7: False colour (b8, b3, b2) monthly composites over the Belgium site (2017-06) of the MC algorithm, 

showing strong artefacts due to undetected haze or cloud borders.  

 
Figure 3-8 and Figure 3-10 show knowledge-based features extracted over the Belgium site and Mali site 
respectively. They target key phases of the crop cycle such as (a) the bare soil after harvest or before 
sowing (Maximum Red), (b) the growth rate (Maximum positive NDVI slope), (c) the peak of 
photosynthetically activity (Maximum NDVI), (d) the green vegetation reduction due to harvest or 
senescence (Maximum negative NDVI slope) and (e) the minimum vegetation cover (Minimum NDVI). 
Cropland appears clearly distinct from other classes. Depending on how the time-series cover the crop 
cycle, specific features tends to give a homogeneous response over the cropland regardless of the crop 
types (Waldner et al., 2015). The features based on slopes are more sensitive to noise and produce 
patchy results, which is especially in the Belgium site (Figure 3-8). These phenomena can be a source of 
additional noise for the classification. Part of the noise is related to the spectral temporal features 
themselves (Lambert et al., 2016). Spectral-temporal features are based on extreme values and are thus 
more sensitive to noise, as noise itself is characterized by extreme values.  
 
Compared to KC products, features of QC produce cleaner images, as observed in Figure 3-9 and Figure 
3-11. They are mean of all valid reflectance values between the defined thresholds. Thus, the effects due 
to extreme values is smoothed. No particular artefact is visible on these two quantiles. However, other 
quantiles could be computed to get more inputs for classification algorithms. 
 
Finally, Figure 3-12 compares the outputs of the five algorithms, considering the beginning of crop 
season and the middle of crop season for the Belgium site. If the time interval algorithms provide regular 
composites, in this case each month, it is clearly observed that it can result in partly or totally unusable 
product as input for a classification due to cloud cover. On the contrary, being computed on the entire 
time series, feature-based algorithm provides fewer inputs but of better quality. Also, due to their 
smaller compositing period, time interval algorithm are much more sensible to cloud mask artefacts, as 
visible in the composites of middle crop season in Figure 3-12. Concerning the beginning of crop season, 
when bare soils are still present, quantile 10 of QC performs better than Maximum Red of KC.  
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Figure 3-8: False colour (b8, b3, b2) knowledge-based features over the Mali site: (a) Maximum Red, (b) 

Maximum positive NDVI slope, (c) Maximum NDVI, (d) Maximum negative NDVI slope and € Minimum NDVI. 
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Figure 3-9: False colour (b8, b3, b2) quantile compositing features over the Belgium site: (a) Quantile 10 and (b) 

Quantile 90. 
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Figure 3-10: False colour (b8, b3, b2) knowledge-based features over the Mali site: (a) Maximum Red, (b) 

Maximum positive NDVI slope, (c) Maximum NDVI, (d) Maximum negative NDVI slope and € Minimum NDVI. 
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Figure 3-11: False colour (b8, b3, b2) quantile compositing features over the Mali site: (a) Quantile 10 and (b) 

Quantile 90. 
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Figure 3-12: False colour (b8, b3, b2) of monthly ((a) MVC, (b) MC and (c) WAC) and features ((d) KC and (e) QC) 

composites comparing beginning of crop season (left) and middle of crop season (right). Yellow pixels are invalid 

pixels (cloud mask). 
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3.1.2.3.2 Quantitative analysis 

 
Temporal consistency 
 
This analysis focuses on the effects of compositing on reflectance values over various invariant land 
cover types (i.e. not vegetation) over time. This analysis is of major interest for land cover classification 
as it indicates temporal consistency of the compositing methods. This analysis concerns the time interval 
algorithms, i.e. MVC NDVI, MC and WAC, as their outputs are time series of monthly composites.  
 
The ROI mean values for three spectral bands (b1: blue, b3: red and b8: NIR) are presented along the 
time for the three land cover types in Figure 3-13 a (roof top), b (bare soil) and c (water), coming from 
the Belgium and South Africa sites. In order to better visualize the temporal stability of reflectance values 
over time, standard deviation of the ROI mean values are computed over the entire time series. They are 
displayed for NIR, red and blue spectral bands in Figure 3-14 for roof (a and b), bare soil (c and d) and 
water (e and f).  
 

 

Figure 3-13: Temporal profiles of average surface reflectance for (a) roof top in Belgium, and (b) bare soil and (c) 

water in South Africa for MVC NDVI, MC and WAC composite time series. 

 
For the three land cover types, MVC NDVI standard deviations are systematically higher than those of 
MC and WAC (green bars in Figure 3-14). It is also visible in the temporal profiles in Figure 3-13. It 
indicates that MVC NDVI composite time series are noisier, as concluded by the visual analysis of spatial 
consistency. This difference is less present for roof tops, which is the more invariant surface compared to 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 82| Issue/Rev.: 2.0 

  

bare soil, which can contain small vegetation variations or water, which can vary according to e.g. 
sediments. Being a “best pixel method”, MVC NDVI could be sensitive to these small variations if they 
present extreme values.  
In a general manner, standard deviations are not higher than 0.06 for most of spectral bands and land 
cover types, which indicates an acceptable temporal consistency. MC and WAC composite time series 
show very similar temporal profiles and standard deviations of reflectance values over the entire time 
series. They present less variations than the MVC NDVI. 
 

 

Figure 3-14: Standard deviation of average surface reflectance over roof top in (a) Belgium and (b) Mali, bare soil 

in (c) Belgium and (d) South Africa, and water in (e) Belgium and (f) South Africa, derived from the three time 

interval algorithms.  
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Fidelity to medium date image 
 
This analysis confirms the visual examination in the previous section, with very large amount of artefacts 
for the MVC NDVI. The MVC NDVI has the worse fidelity to central date, especially in the NIR band. In the 
spring season, the vegetation is growing and the MVC NDVI tends to select the latest date with the 
greatest NDVI for vegetated pixels, which are therefore different from the images at the center of the 
compositing period. Regarding the MC and WAC, the observed performances are similar, with small 
advantage for the WAC.  
 
 

 
Figure 3-15: Fidelity to central date in the Red and NIR bands for MVC NDVI, MC and WAC for (a) the Belgium 

site, (b) Mali site and (c) South Africa site.  

 
Remaining proportion of data gaps 
 
Figure 3-16 shows the average percentage of data gaps remaining in the composites for the Belgium site. 
Given that the same compositing period was used for the time interval algorithms, i.e. MC, WAC and 
MVC NDVI, the three methods have exactly the same amount of remaining data gaps. Differences 
between the Maximum Red, Maximum NDVI, Minimum NDVI and the two Maximum slope NDVI features 
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are due to the fact that the computation of a slope is not always possible if not enough data are 
available.   
 
This analysis clearly shows the advantage of working with feature-based algorithms for cloudy sites like 
Belgium, as already observed in the visual analysis. 
 

 

Figure 3-16: Average percentage of data gaps remaining in the composites for the Belgium site. 

 
Artefacts 
 
This analysis assesses the amplitude of the artefacts observable at the limits of zones obtained with the 

same set of dates. Figure 3-17 shows the standard deviation of the average difference of reflectance 

values between pixels at the external borders and pixels at the internal border of contiguous zones, for 

(a) Belgium and (b) Mali (Red and NIR bands).  

 

In a general manner, more artefacts are presents in the Belgium site. This is probably due to the higher 
cloud cover, leading to more patches coming from different set of dates. Time interval algorithms show 
higher values of artefacts than features-based algorithms. This confirms the visual analysis showing more 
noise and artefacts in monthly composites.  
 
Unexpected high artefacts in the WAC may come from the weights higher for the central date. Then, the 
reflectance values of the different set of dates results in more different values. Indeed, for all connected 
groups of pixels with the same set of dates, the average difference between the external border and the 
internal border of the contiguous zone will be higher is a lower weight is applied on the extreme images 
of the compositing period.  
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Figure 3-17: Artefacts in the Red and NIR bands for the five selected algorithms for (a) the Belgium site and (b)  

the Mali site.  

 

3.1.2.4 PROBA-V Compositing  

The PROBA-V time series was a good candidate to replace the Sentinel-3 dataset initially planned in this 
project. The PROAB-V Collection 1 currently provided by VITO corresponds to the most recent 
reprocessing of the PROBA-V archives completed in 2018 and was expected to improve significantly the 
cloud and cloud shadow screening. Unfortunately, several artefacts are clearly detected during the 
compositing process whatever is the compositing period or interval. Indeed, the cloud detection 
algorithm flags systematically the very brigth pixels corresponding to industrials areas, bare soils or 
beaches.  
 
Figure 3-18 illustrates the MC image for the first half of July showing in white the areas without data due 
to this cloud detection algorithm. The compositing process further enlarges these areas without data due 
to the erroneous clouds detection which is systematic but does not flag exactly the same pixels but 
sometimes the neighbouring pixels as well. 
 
For the sake of demonstration of this shortcoming of the current PROBA-V algorithm, the Figure 3-19 
highlights the false cloud and cloud shadow detection induces by the Collection 1 cloud screening 
algorithm which corresponds to an improvement with regards the previous one. These findings also 
observed on the 300 m resolution prevent the advanced exploitation of the PROBA-V time series. 
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Figure 3-18: PROBA-V 100 Composite from a time series acquired the 1
st

 to the 15
th

 July 2018. The mean 

compositing was applied on the Collection 1 cloud flag recently reprocessed. The white pixels in the zoom to 

Antwerpen (Belgium) on the right corresponds to features permanently flagged as cloud. 

 

 

Figure 3-19: PROBA-V cloud free image acquired on the 2
nd

 July 2018 over Belgium and The Netherlands (left 

image). The corresponding cloud and cloud shadow flags as detected by the Collection 1 algorithm.  

3.1.2.5 Summary and conclusions 

This analysis assesses the performance, advantages and drawbacks of five compositing approaches 
applied on land surface reflectance of Sentinel-2 images. The five methods considered are Maximum 
Value Compositing NDVI (MVC NDVI), Mean Compositing (MC), Weighted Average Compositing (WAC), 
Knowledge-based Compositing (KC) and Quantile Compositing (QC). One visual and four quantitative 
analyses examine the consistency as well as the noise introduced into composite images of the 
reflectance data time series.  
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Visual comparisons and quantitative analysis of the composites consistency provides complementary and 
coherent conclusions. The main advantages of feature-based algorithms (KC and QC) are a better spatial 
consistency achieved, thanks to the use of the entire time series as input, as well as very few data gaps 
compared to time interval algorithms. The time interval algorithms present the advantage of providing 
more composites for the same length of time series. Indeed, more outputs are available with monthly 
composites than only several features for the entire year. However, due to the short compositing period, 
some monthly composites could be partly or totally unusable because of the cloud cover. In addition, 
also due to their smaller compositing period, products of time interval algorithms are much more 
sensible to cloud mask artefacts.    
 
More specifically, the features of KC based on slopes are more sensitive to noise and produce patchy 
results, especially for cloudy sites. The other features are very homogeneous with a high spatial 
consistency. Compared to KC products, features of QC produce cleaner images. However, other quantiles 
could be computed to get more inputs for classification algorithms. 
 
The MVC NDVI outputs presents lower temporal and spatial consistencies than MC and WAC, which 
produce more homogeneous and very similar composites. The larger noise is due to the fact that this 
method only selects one date for each pixel and discards the others, compared to MC and WAC that are 
designed to reduce this effect by averaging all valid observations. However, MC and WAC are more 
sensitive to cloud masks artefacts because of the average of all valid pixels including those that are not 
supposed to be valid (undetected haze or cloud borders). These artefacts lead to patches and spatial 
inconsistencies visible in the products. In addition, undetected cloud shadows are strongly visible in MVC 
NDVI outputs, compared to MC and WAC. 
 
The Sentinel-2 cloud mask presents too many artefacts concerning the delineation of clouds borders, the 
haze and cirrus detection and removal, the detection of cloud shadows and cloud commission for bright 
surfaces (see [AD07]. Improvements are necessary to produce composites with sufficient quality for 
classifications, and for a benchmark interpretation based on compositing methods rather than on mask 
artefact.  
 

3.1.3 Indices 

A thorough list of envisioned indices has been reported in the document D31.1b [AD06]. In phase 1, the 
focus was set on the following indices, among the most used, the NDVI and the NDWI (also named 
NDMI).  

During the MULTIPLY workshop that took place on the 5th-8th February 2018, it has been stated that the 
following phenological variables will be retrieved using different physical radiative transfer models (RTM) 
and made available on the platform, after the processing of Sentinel-2 and Sentinel-1 images, on 
demand: 

- LAI, in optical and in microwave domain; 
- faPAR; 
- soil moisture and soil roughness 
- canopy chlorophyll content 
- canopy optical depth or thickness 
- canopy height 
- canopy water content 
- leaf color 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 88| Issue/Rev.: 2.0 

  

Those phenological indices and their contribution to the project (for example in the characterization of 
the type of crops and the species of trees) may be explored in more details once the platform become 
operational, if it is possible in the second phase. 

3.1.4 Time Features 

In the ECoLaSS Deliverable D6.1 – D31.1: Methods Compendium: Sentinel-1/2/3 Integration Strategies 
[AD06] several spectral, textural and also temporal indices are described which are of potential relevance 
as input for image or time series classification. The following sections describe the time features 
methodology (Valero et al., 2016) which was applied for the testing and benchmarking of methods for 
forest (section 4.1.2) and agriculture (section 4.1.4). The preliminary set of implemented features will be 
explained (section 3.1.4.1), followed by feature selection and a consecutive classification workflow 
implementing the time features (section 3.1.4.2). As proved all throughout the tests and demosites 
productions, temporal metrics are decisive to extract most of the time series information. 
 

3.1.4.1 (Preliminary) Set of Implemented Features 

From the data described in 3.1.3 and the ECoLaSS WP 31 Deliverables [AD06], a set of different 
temporal-spectral features (time features) for varying time periods was calculated. Time features are 
able to capture statistical properties and information about significant changes (due to seasonal 
patterns, extreme events or human activity) contained in the time series (Valero et al., 2016). They can 
be flexibly computed from reflectance or index data and can act as powerful input features for various 
classification or regression tasks. When dealing with different periods for vegetation phases in different 
geographic areas, the use of remote sensing time series data can be limited (Valero et al. 2016). This 
effect is mitigated by the time features, as their information is not directly related to the acquisition 
dates, they do not require prior knowledge of the change event dates or in general manual selection of 
scenes.  
 
In case of Sentinel-2, the time features were calculated for the indices Brightness Index (BRIGHTNESS), 
Inverted Red Edge Chlorophyll Index (IRECI), Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Water Index (NDWI), NDRE1 and NDRE2 (Normalized Difference Red Edge Index), 
MSAVI2 (Modified Soil-ajusted Vegetation Index), SWIRMean (mean of SWIR1 and SWIR2), TCG (Tasseled 
Cap Greenness), TCB (Tasseled Cap Brigthness), CIrededge (Chlorophyll Index Red Edge), and CIgreen 
(Chlorophyll Index Green) (Table 3-3). In case of Sentinel-1, the time features were calculated for the VV 
and VH polarizations, the ratio of VV and VH and the normalized difference of VV and VH. The specific 
calculation and characteristics of the time features are described in more detail below. WP31 provides 
further details of the integration between Sentinel-1 and Sentinel-2 (i.e., optical and radar), plus other 
sensors, together with info related to derived indices.  
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Table 3-3: Time features calculated for various bands and indices. 

Sensor Bands / Indices Time features 

Sentinel-2  Brightness (derived through summation 
of the values of the bands Green, Red, 
NIR and SWIR1) 

 IRECI (Inverted Red Edge Chlorophyll 
Index) 

 NDVI (Normalized Difference 
Vegetation Index) 

 NDWI (Normalized Difference Water 
Index, based on SWIR and NIR) 

 NDRE1 and NDRE2 (Normalized 
Difference Red Edge Index) 

 MSAVI2 (Modified Soil-ajusted 
Vegetation Index) 

 SWIRMean (mean of SWIR1 and SWIR2) 
 TCG (Tasseled Cap Greenness) 
 TCB (Tasseled Cap Brigthness) 
 CIrededge (Chlorophyll Index Red Edge) 
 CIgreen (Chlorophyll Index Green) 

min, max, mean, std,  
p10, p25, p50, p75, p90, pdiff75/25, 
pdiff90/10, CoV 
  
maxmean, activity, difmin3, difmax3, 
difdif3mean 
Postrend(NDVI only), negtrend (NDVI only) 
  

Sentinel-1  VV (Gamma0)  
 VH (Gamma0) 
 Norm. Difference VV/VH  
 Ratio VV/VH 

min, max, mean, std,  
p10, p25, p50, p75, p90, pdiff75/25, 
pdiff90/10, CoV 
  
maxmean, activity, difmin3, difmax3, 
difdif3mean 

 
The features are considered as separated in two classes of different complexity, referred to as "simple" 
and "complex" time features. Simple time features are commonly used statistical metrics which are 
calculated over time using all valid (particularly cloud and cloud shadow free) observations. This includes 
the minimum (min), maximum (max), mean, standard deviation (std), different percentiles: 10th (p10), 
25th (p25), 50th (p50), 75th (p75) and 90th (p90), and the differences between the 90th and 10th (pdiff90/10) 
and 75th and 25th percentiles (pdiff75/27) of the time series.  
 

 

Figure 3-20: Temporal window concept: Single sliding temporal window (e.g. for calculation of mean_max) (top) 

and difference sliding temporal window configuration (e.g. for calculation of dif_max (bottom)); both examples 

have a window size of 3 consecutive observations. 
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The "complex" time features are calculated by the application of a temporal sliding window from the 
time series stack (Figure 3-20). At each window step, the information of the respective scenes inside the 
window range is integrated and used to iteratively update the desired time feature. E.g. the mean_max is 
the "stabilized" maximum value of the time series, iteratively updating the maximum feature by the 
mean of the scenes at each window step. The dif_max, dif_min, and dif_dif features use two offset 
temporal sliding windows (“difference windows”) to iteratively update the feature by the respective 
difference of the window scene complexes. These features represent the maximum positive (dif_max) 
and negative difference (dif_min) within the time series. The dif_dif feature is the difference of dif_max 
and dif_mean. The calculation of the dif_max is detailed in Figure 3-21. At each window step, for each 
pixel, the feature is only updated when at least one scene in both scene complexes is valid and cloud free 
for a specific pixel. Pixels, for which no update from the initial feature value of 0 was triggered keep this 
state. If at each iteration step no update was possible due to at least one of both scene complexes being 
completely cloud masked, the pixel is flagged as cloud masked in the final time feature. Instead of using a 
temporal window, the pos_tr and neg_tr loop through the time series and iteratively integrate 
information from the previous and recent scene to find pixels with significant positive or negative value 
transitions (e.g. in the case of a change from vegetation to bare soil) between consecutive scenes.  
 

 

Figure 3-21: Concept of the calculation of a complex time feature shown for the dif_max time feature. 

3.1.4.2 Feature Selection 

One of the main challenges when deriving LC/LU maps over large areas is the generation of suitable 
spatially coherent layers or time series features for the analysis (usually supervised classification). The 
irregular nature of ordinary remote sensing time series data (e.g. due to clouds within a scene, different 
acquisition times between orbits) can be resolved via a best-available pixel composite approach (from 
the time series of each pixel, only the least cloudy one is combined in a composite image) – as 
mentioned in section 3.1.2 – or by calculating spectral-temporal time series metrics (e.g. mean, standard 
deviation, percentiles, etc.), see the previous section.  
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Building a large set of features is computationally expensive and it is desirable to reduce this cost by only 
building the features that turn out to be useful for the respective classification task. However, the 
optimal set of useful features is usually not known in advance. In order to tackle this problem the 
classification workflow of this work (Figure 3-22) explicitly addresses feature selection before the feature 
calculation for the full dataset is carried out. In the corresponding sections, benchmarking of 
computation times versus achieved accuracy during implementation of the tests is applied.  

 The workflow comprises the following steps: 

1. Extraction of raster values at reference data locations (where class labels are known) for all the 
available acquisitions, bands and indices. This results in a small data subset to work on before 
building the final features for the whole image footprint. 

2. Calculation of the potential time features from the extracted data. Together with the known 
labels at the extracted sites, this yields the combination of labels and predictors/features 
required for training a classification model.  

3. Splitting the full reference data in a training and test set. 

4. Training the classifier based on the training set. Here, the first training step is a recursive feature 
elimination. This algorithm finds a small subset of all the potential input features with which a 
comparable (and sometimes higher) accuracy can be achieved compared to a full-feature model. 
After the suitable subset of features is known, the final model is trained with the selected 
feature. 

5. Generation of an accuracy report based on the independent test data. 

6. Calculation of the selected features for the whole raster data.  

7. Prediction / mapping with the calculated raster features via the final model. This step yields the 
predictions (classes), class-probabilities (one layer per class), and three reliability layers (max. 
probability, breaking ties, entropy). 
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Figure 3-22: Classification workflow. 
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3.2 Indicators and Variables 

This section presents methods developed and applied on the Demonstration site West for determining 
first generic land cover metrics, then crop growth conditions, and finally multiannual trends and 
potential changes for the specific changes of land covers, i.e. the HRL Grassland and Forest layers. The 
prototype dealing with the multiannual trends and potential change detection is based on S-1 time 
series. 
The method for the phenological prototype directly related to agriculture which corresponds to the crop 
emergence date detection is described also in this section and will be applied on the Demonstration site 
South Africa.  
 

3.2.1 Method for generic LC metrics  

In this section, it is proposed to create phenological products that includes several layers over the West 
demonstration site. This approach seeks to determine phenological parameters, such “Phenological Start 
of Season” (PSS) or a “Maximal Monthly Activity” (MMA), based on robust series of dense multi-
temporal images and derived phenological parameters, such as the spectral optical index NDVI. Based on 
the maximal monthly value of the NDVI, an unsupervised classification with an arbitrary number of 
classes is launched, in order to regroup pixels exhibiting the same phenological behavior. Parameters 
such as “Phenological Start of Season” (PSS), “Phenological Peak of Season” (PPS), “Phenological Length 
of Season” (PLS), are manually detected for each of those classes and the resulting images of the 
unsupervised classification is reclassified for each of those parameters. 

Normalized Difference Vegetation Index or NDVI 

The “Normalized Difference Vegetation Index” (Rouse et al., 1974; Tucker, 1979) is used as an indicator 
to monitor vegetation health and can be used as a proxy for photosynthetic activity, as detailed in WP31. 
It is calculated as: 

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

By design, the NDVI varies between -1 and 1, where: 

• dense vegetation exhibits values between 0.9 and 0.6; 

• grasslands or senescing crops gives values between 0.5 and 0.2 

• soils are characterized by small positive values usually between 0.1 and 0.2; 

• deep water and clouds yield negative values. 

The NDVI is widely used to qualitatively detect the presence of vegetation and monitor qualitatively its 
growth without requiring any further in-situ data. 

Temporal feature 

For a given pixel of the demonstration site, the maximum value of the NDVI was determined for a 
selected month, for all the considered years, from 2013 to 2017. When clouds were too present, a fusion 
of several months has been applied: the winter maximal NDVI has been computed using images from 
November, December, January and February – and the resulting image has been labeled as ‘months of 
winter’. 

The maximum value of NDVI are then stacked into a multiband image used for the classification. 

K-means 

The K-means clustering algorithm is a classifier which assumes that features associated with each class 
are distributed according to a Gaussian distribution. However, this can lead to spurious results if the data 
is not normally distributed. This method is a pixel-based unsupervised and iterative classification 
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algorithm based on spectral information and similarity. The algorithm performs two steps iteratively in 
order to reduce the variability within each cluster: 

• Reassign data points to the cluster whose centroid is closest; 

• Calculate the new centroid for each cluster. 

The classes identified by the K-means classification, based solely on the spectral signature of their pixels, 
can then be associated with a type of LU to produce the map. For the K-means to deliver those classes, a 
given amount of them has to be given as a parameter. 

3.2.2 Method for crop growth condition  

The growing condition of any crop can be assessed by the trajectory of the Leaf Area Index (LAI) when 
the LAI can be observed on a regular basis . Unlike the NDVI, the LAI is a biophysical variable which can 
be retrieved by various sensors. The LAI is here not only defined by the half of the leaves area as 
commonly accepted but rather by the Green Area Index (GAI). The GAI is indeed a more appropriate 
term when working with cereals because the main aerial organs (leaves, ears and stems) are 
photosynthetically active . For the sake of clarity, the LAI acronym will however be used while this means 
GAI. The LAI retrieval is based on the BVnet algorithm using artificial neuronal network trained on 
simulated LAI and reflectance values. The reflectance values are simulated using the ProSail radiative 
transfer model for the Sentinel-2 bands at 10 m and 20 m-resolution except the blue band (B2) and the 
the B8 due to its overlap with B7 and B8a.  

The retrieved LAI values are averaged over the entire field minus an inner buffer of 2 pixels from the field 
boundaries. Then the Whittaker smoother is applied on the LAI time series assuming a continuous 
evolution of the LAI.  

Based on the Land Parcel Identification System which is available on the crop type (either from the crop 
map obtained in WP4.4 or from the LPIS whenever available), the LAI values of all the fields of the same 
crop located within a radius of 3 km far from the field border are averaged along the season. That is 
mainly to compare the crop growth condition for any given field of interest. The average does not 
include the field of interest and is not available when no field of the crop of interest are grown within the 
3 km radius. The 3 km radius was found relevant because of the similarity of external factors, typically 
the meteorological conditions and the agro-climatic zone. The average LAI profile of the crop of interest 
and the LAI profile of the field of interest can then be visually compared in terms of crop development 
(earliness, maximum, maturity, etc.). Both profiles are also quantitatively assessed through a simple 
metric corresponding to area under the curve for three different crops.   

3.2.3 Method for multiannual trends and potential changes based on SAR 
data from S-1  

In this section, an approach to describe multiannual trends and potential changes for the specific HRL 
layers forest and grassland is explained into detail. The approach relies on the idea that based on a series 
of multi-temporal images for a given study area, the remotely sensed temporal dynamics of a specific 
HRL class are sensibly different to those of all other classes. For instance, in the case of radar data the 
backscattering temporal mean of urban areas (due to double bounce reflection) is higher than that of 
forest areas (which might result in high backscattering in one/few acquisitions due to specific conditions, 
but in general exhibit lower values). Further general assumptions of this approach are that (1) a specific 
class of the HRLs might change from one year to another and (2) that the classes within the HRL are 
homogenous at the local to regional scale of the test sites despite having different characteristics at the 
pan-European scale. Considering these assumptions, the following method is based on calculating 
statistical distributions for different seasonal and annual metrics derived from Sentinel-1 time series data 
(see section 3.2.3.1) for each class of the HRL Forest (two classes: broadleaved and coniferous) and HRL 
Grassland (one class: grassland (GRA)) within the demo site. In the next step, potential changes within 
the HRL are detected at pixel-level, based on these seasonal and annual metrics. Here, a statistical test is 
applied describing if a specific pixel belongs to the considered class at a certain significance level. Pixels 
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identified as not belonging to the class are labelled as candidates for a HRL update. Therefore, pixels 
within a certain HRL are assumed to have similar backscatter values over time and space. This might 
become more critical when the considered spatial extent covers larger areas and different 
biogeographical zones.   

The approach comprises two steps, which are described into detail in the following. 

3.2.3.1 Pre-processing on the input data 

This section describes the pre-processing and preparation of the input data. 

Creating the master HRL  

Primarily, the HRLs require harmonization with respect to a) their original spatial resolution of 20m to 
the resolution of the Sentinel data (i.e., 10m) and b) their spatial coverage (adaptation to the Sentinel-2 
tile system). Figure 3-23 shows the harmonized HRL Grassland of 2015 for the Belgium test site. The 
harmonized HRL Grassland describes the situation at time t0 (in this case 2015).  

 

Figure 3-23: Sentinel-2 tiles for Belgium test site and harmonized grassland HRL of 2015 

S-1 preprocessing and feature extraction 
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S1 IW GRDH data acquired both in ascending and descending pass from 2015 to 2018 was pre-processed 
by means of the S1TBX/SNAP software as described in AD07 Methods Compendium: Time Series 
Preparation. Specifically, this included the usual steps of orbit correction, thermal noise removal, 
radiometric calibration, Range-Doppler terrain correction and conversion to dB values. 

After pre-processing all the available data for the given region, four key temporal statistics have been 
extracted for each pixel for the seasons a) March, April, May (MAM), b) June, July, August (JJA), c) 
September, October, November (SON) as well as separately for the complete years 2015, 2016, and 
2017, namely:  

 backscattering temporal maximum; 

 backscattering temporal minimum; 

 backscattering temporal mean; 

 backscattering temporal standard deviation; 

Ascending and descending orbits were considered separately due to the strong influence of the viewing 
geometries on the backscattering process. Figure 3-24 shows examples of the backscattering temporal 
statistics of 2015 over the Belgium demo site. 

 

  

(a) backscattering temporal mean 
(b) backscattering temporal standard 

deviation 
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(c) backscattering temporal minimum (d) backscattering temporal maximum 

Figure 3-24: Examples of temporal S-1 metrics: Backscattering temporal statistics of 2015 of the S-1 relative orbit 

161 in ascending pass over the BELGIUM demo site: (a) backscattering temporal mean, (b) backscattering 

temporal standard deviation, (c) backscattering temporal minimum, (d) backscattering temporal maximum 

(outlines of S-2 granules in yellow) 

 

Reducing time series data to seasonal and annual metrics has the advantage of enabling a fast and 
effective processing without noise influence. The preference of using metrics instead of single 
observations for land classifications is widely applied because of its ability of characterizing certain land 
cover classes with such features (Huettich et al., 2009). 

 

3.2.3.2 Statistical analysis of seasonal and annual metrics within the HRL classes to identify potential 
change 

The approach relies on the basic assumption that all pixels of the considered HRL class have similar 
characteristics in the feature space (described in section 4.3.1) which considerably differ from all other 
classes. Differences between the feature values of a pixel and their distribution for a certain class can be 
used as an indicator for change. Therefore, three steps have been implemented to identify pixels which 
might need an update.  

1. Firstly, the statistical mean and standard deviation of all available S-1 backscatter metrics were 
calculated for each HRL to derive the general behaviour of that specific land cover class. 

2. Based on these statistics, the distance in the feature space between each pixel and the characteristic 
class mean was calculated.  

3. The distance of pixel values to the class mean was discretized into three “potential change” 
categories:  
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a. The 1st category suggests that the corresponding pixel does not differ from the class mean 
and thus is considered as stable with no change: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑡𝑎𝑏𝑙𝑒 ∶ 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 < 𝐶𝑙𝑎𝑠𝑠𝑚𝑒𝑎𝑛 ± 𝐶𝑙𝑎𝑠𝑠𝑠𝑡𝑑𝑑𝑒𝑣  

 

b. The 2nd category implicates that the pixel is placed between ± two standard deviations: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1𝑠𝑡𝑑𝑑𝑒𝑣  : 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 < 𝐶𝑙𝑎𝑠𝑠𝑚𝑒𝑎𝑛 ± 2 ∗ 𝐶𝑙𝑎𝑠𝑠𝑠𝑡𝑑𝑑𝑒𝑣   𝐴𝑁𝐷 > 𝐶𝑙𝑎𝑠𝑠𝑚𝑒𝑎𝑛 ± 𝐶𝑙𝑎𝑠𝑠𝑠𝑡𝑑𝑑𝑒𝑣  

 

c. The 3rd category implicates that the pixel is out of the range of ± two standard deviations 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2𝑠𝑡𝑑𝑑𝑒𝑣 ∶ 𝑓𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 >  𝐶𝑙𝑎𝑠𝑠𝑚𝑒𝑎𝑛 ± 2 ∗ 𝐶𝑙𝑎𝑠𝑠𝑠𝑡𝑑𝑑𝑒𝑣  

4. In a fourth step, the results for each feature were combined to a final change plausibility 
estimate, which is robust against infrequent outliers. The approach considers the distance classes 
throughout all features of one year and calculates the frequency of one pixel belonging to one of 
the three categories defined in the second step. By using all metrics and making a decision based 
on the cumulative analysis of each pixel’s distances robust change estimates could be derived.  

These change plausibility frequencies may subsequently be discretised further with class-specific 
thresholds to highlight only change candidates at the pixel level. Empirical testing suggests a suitable 
thresholding in that either a) less than 50% of considered metrics belong to category Distancestable or b) 
more than 33% of considered metrics belong to category Distance2stddev. 

By applying these two thresholds, all pixels featuring a higher distance to the statistical mean of one 
particular HRL class are labelled as a potential pixel for update. A flow-chart of the entire workflow is 
presented in Figure 3-25. 

 

 

Figure 3-25: Workflow for identification of potential pixels for update within a certain HRL 
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3.2.4 Methods for emergence date detection  

The crop emergence date is a prototype which requires method developments which are specifically 
targeted to this phenological parameter. Therefore several methods are described to be tested on a 
calibration dataset. The challenge of the emergence date detection in an agriculture context is to deliver 
the information as early as possible in the season. Unlike most methods for phenological parameters 
retrieval, this means that the phenological analysis take place much before the completion of the full 
growing cycle. 

3.2.4.1 Emergence date as phenological parameter 

The estimation of the emergence date is based on the detection of the first phenological stages (crop 
emergence, first leaf development) from satellite remote sensing (i.e. Sentinel-2) time-series. The aim is 
to provide early-season information, to allow an easy operational implementation and further 
generalization of the method. The detection is performed at the field level on early-season satellite 
images which presents a clear advantage against detection methods requiring full season images to 
provide initial results. 

The phenological stages are commonly defined according various classification systems such as the 
Biologische Bundesanstalt and Bundessortenamt und Chemische Industrie (BBCH) scale. The standard 
satges are selected to provide a continuous scale ranging from 0 to 100 which is relevant to any crop and 
location.  

In particular, a specific BBCH stage is reached when at least 50% of the plants are within the definition of 
that stage (Lopez-Sanchez et al., 2012). The onset date of the stages presents an important inter-annual 
variation. It can be explained by environmental and climatic factors as well as farm-level management 
decisions (crop variety, crop rotation, input availability, etc.) (Sakamoto et al., 2010). Generally, 
temperature and water are the main climatic factors impacting the development of the majority of 
species. A large number of species is also impacted by the length of the photoperiod. In temperate 
climates, light is generally the primary limiting growth factor. In humid climates, light and nutrients are 
both limiting. In tropical or dry subtropical climates, water is the main constraint but the absorption of 
nutrient is also reduced.  

 

3.2.4.2 VIs and hue time series as candidate data sources 

Vegetation Indices (VIs) can be seen as a proxy of the Fraction of Absorbed Photosynthetically Active 
Radiation (FAPAR) as they relate "greenness" with the measure of the absorption characteristics of the 
vegetation in the red and NIR spectral bands . NDVI first relates to total green biomass and is sensitive to 
low to moderate LAI values but saturates at high values (Nguy-Robertson et al., 2014). VIs do not present 
a straightforward biophysical interpretation, although they are strongly correlated with biophysical 
variables (White et al., 1997; Eklundh et al., 2003). LAI retrieval algorithm can also be considered but the 
underlying assumption and the higher computing cost of such an algorithm prevent considering it at this 
stage. 

Studies showed that the NDVI gives good estimates of the vegetation dynamics when the vegetation is 
photosynthetically active (Palacios-Orueta et al., 2012). Other VIs based on the Short-Wavelength 
Infrared (SWIR) are better for assessing low vegetation density zones. In semi-arid areas, the information 
contained in both the Mid-Infrared (MIR) and blue regions relates to soil properties which helps in 
distinguishing vegetation type classes (Hüttich et al., 2009). 

Pekel et al. (2011) studied the detection of green vegetation in semi-dry and dry areas. The image color is 
transformed from a Red-Green-Blue (RGB) to a Hue-Saturation-Value (HSV) representation. As the MIR 
and NIR regions present several advantages for soil discrimination, the three MIR-NIR-Red bands are 
used instead of RGB. The Hue component is the only parameter conserved because it is able to 
discriminate land cover type where Saturation and Value fail. Marinho et al. (2014) applied the method 
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developed by Pekel et al. (2011) and tested it for sowing date estimation which had not been 
investigated yet. The study aimed at estimating green-up onset dates in arid and semi-arid regions (i.e. 
the Sahel region) from MODIS 250 m resolution images and RFE 8 km resolution rainfall estimate and, 
then, comparing it with ground-truth data.  

To reduce the noise and fill the gap in the time series, two interpolation methods are tested. First, a 
simple linear interpolation method is applied between all the successive observations, between October 
and the end of April. Alternatively, a logistic interpolation method commonly used to reduce noise in the 
vegetation profiles is also selected to interpolate the satellite observations during plant growth (i.e, 
between minimum and maximum index values): a four-parameter logistic function. 
 

3.2.4.3 Candidate detection methods 

The candidate methods for phenology studies are often grouped into four main categories: threshold, 
moving window, function fitting and model fitting methods (Zeng et al., 2016; de Beurs and Henebry, 
2010). 

(1) The threshold method (Figure 3-26a) is based on linking a phenological event with the crossing of 
a certain value of the VI curve. The threshold can either be fixed or dynamic and varies with land cover, 
soil background, view and solar angle (Reed et al., 1994). However, they do not rely on an underlying 
biophysical meaning. For example, White et al. (1997) identified the onset and end of greenness when 
the NDVI ratio of the smoothed curve exceeds or falls below 0.5 respectively. Lobell et al. (2013) defined 
the green up phase as the date when the double-logistic fitted function exceeds 10% of the year’s 
maximum amplitude. The main drawback of the fixed threshold is the disability for reflecting the spatial 
changes of larger study area and inconsistency for a wide variety of land covers (de Beurs and Henebry, 
2010; Reed et al., 1994). Plethora of thresholds have been used based on the long-term VIs mean, yearly 
VIs, NDVI ratios, Normalized Difference Water Index (NDWI), etc. The ratio approach has the advantage 
of being independent from the geographic location and land cover of the area. As such, the NDWI is 
particularly indicated for heavily snowed areas. 

(2) The moving window method can be derivative or backward-looking moving average. The 
derivative method (Figure 3-26b) is founded on the assumption that the fastest green-up or greatest leaf 
expansion corresponds to the most ecologically relevant SOS (White et al., 1997). In other words, the 
maximal increase and decrease of NDVI tally with SOS and EOS (de Beurs and Henebry, 2010). Moving 
windows of a certain temporal extension are applied on each pixel and the slope (or derivative) is 
calculated. The highest positive and lowest negative derivatives are then easily extracted. 

Some methods retrieve the second derivative and determine the SOS as the time point combining a 
positive slope and a local maximum. Cong et al. (2013) defined green-up onset date as the highest 
positive relative change of the average NDVI time-serie for a 15-day moving window. Moulin et al. (1997) 
identified the beginning of the vegetation cycle (b_date) on three conditions: (i) NDVI value at b_date is 
close to a bare soil value, (ii) left derivative (before b_date) should be equal to zero because NDVI is 
assumed constant before the growth season, (iii) right derivative (after b_date) should be positive on 
two weeks’ time window. de Beurs and Henebry (2010) reported that this method gives good results 
where the NDVI curve displays a sharp increase and a steep decrease. 

The backward-looking moving average method identifies the onset of greenness as the date when the VI 
curve crosses the moving average function which represents a significant change in the growth trend. 
The moving average is built as the average of the last i observations. The choice of the temporal window 
(i.e. number of i observations) is crucial and arbitrary as it introduces a time lag: a large time interval is 
less sensitive whereas a small interval may take insignificant variations into account (Reed et al., 1994; 
de Beurs and Henebry, 2010). 
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These two first methods present the advantage of being able to retrieve multiple growing seasons 
(Verhegghen, 2013). However, they are not good at distinguishing the basic temporal variations of the 
vegetation reflectance (noise) from the relevant seasonal changes. That, the date retrievals based on 
local minima, maxima, or fixed thresholds can be completely shifted if observation errors contaminate 
the original dataset. For instance, atmospheric constituents, bi-directional reflectance distribution 
function, cloud coverage, and the mixed-pixel effect often influence MODIS images (Sakamoto et al., 
2010). 

 

 

Figure 3-26: Four methods based on the NDVI to detect start and end of the season. a) fixed threshold, b) 

derivative, c) Fourier transform, d) quadratic fitting based on AGDD (de Beurs and Henebry, 2010) 

 

(3) The function fitting method (Figure 3-26c) applies a mathematical function to a given VI curve to 
smooth or filter the data and extract the main information. Different functions have proved to be useful: 
Fourier analysis, wavelet transformation, Principal Component Analysis (PCA), Canopy Structure Dynamic 
Model (CSDM), etc. The Fourier analysis which decomposes a complicated curve into a sum of sinusoidal 
waves, is able to approximate a VI (de Beurs and Henebry, 2010). This segmentation is sensitive to 
systematic changes and reduces the non-systematic data noise. To interpret the new curve, the first 
Fourier harmonic is considered to represent the mean NDVI. The wavelet transform also decomposes 
the VI time-series into a set of small local waves (named wavelets) assuming the fact that the noise 
components have higher frequencies than the main seasonal changes (Sakamoto et al., 2010). An 
important aspect is that this type of frequency decomposition performs better on long time-series 
showing periodic changes. Consequently, the source observations should be measured at a regular time 
interval or require gap filling to be adequately processed (de Beurs and Henebry, 2010). 

To retrieve phenological events from a fitted curve, the procedure of Sakamoto et al. (2005) can be used: 
the minimal or inflection point earlier than 60 days before the maximum value (defined as heading date) 
is selected, then, the later of the two points is identified as planting date. However, the Root Mean 
Square Error (RMSE) of 12.1 days for planting date estimate is not satisfactory. Another way to account 
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for key information lies on the PCA. Through a linear combination of the original observations, the 
primary factors explaining the main variance of the dataset are kept. Again, the interpretation of the 
resulted parameters (eigenvectors) is not self-evident and does not remain consistent over the years 
limiting the comparative power of the method (de Beurs and Henebry, 2010). The advantage of those 
fitting methods is to reduce noise and adjacency pixel problem (between pixel effects) and their ability to 
derive phenological metrics in a consistent way (Palacios-Orueta et al., 2012). 

The model fitting method fits a model to the remote sensed observations. These models can be simple 
(logistic models, etc.) or more complex (Gaussian Local Functions, etc.) and are previously defined or 
dynamically built with input data (de Beurs and Henebry, 2010; Zeng et al., 2016). The number of input 
parameters compared to the amount of observations available for their identification and the need of 
large-scale ground-truth data is crucial when assessing the scope and implementation of these model 
fitting (Duchemin et al., 2008). 

Accumulated Growing Degree Days (AGDD) can be interpreted as a measure of the accumulated heat 
above a specified base temperature from the beginning of the season: maize base temperature is 
estimated around 10◦C. Modelling vegetation growth under AGDD instead of anthropocentric calendar 
time (Figure 3-26d) is more relevant especially during the first half of the growing season when day 
length and water stress are not the main contributors yet (de Beurs and Henebry, 2010). 

These four methods can be combined. Threshold methods are generally applied on smoothed function 
to reduce data noise.  
Then, a logistic function was applied to each identified increasing or decreasing period and key 
phenological dates were then retrieved from the fitted curve. For a single growth cycle, the following 
logistic function modelled the curve: 

 

Where t is time in days, y(t) is the VI value at time t, a and b are fitting parameters, c + d is the 
maximum VI value, and d is the initial background VI value. 
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Figure 3-27: Overview of the six emergence estimation methods. Methods without parameterization: (a) inflection point,(b) base logistic (c) maximumvalue. Methods with 

parameterization: (d) highest slope, (e) absolute threshold, (f) relative threshold. The threshold methods are both tested on the linear and logistic interpolated observations. 

Presented vegetation profiles are examples from the maize calibration sample 
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3.2.4.4 Performance indicators 

Furthermore, the comparison of the results of a systematic combination of detection methods and 
vegetation proxies is necessary for detecting the best combination. The systematic analysis of three 
approaches (i.e. threshold, derivative method and model fitting) and three vegetation proxies (NDVI, 
soil-adjusted MSAVI and Hue index (MIR-NIR-Red)) interpolated using two functions (linear, logistic), 
and the assessment of their relative performances against ground-truth measurements are 
achieved. 

It is important to notice that each tested method aim to detect different time metrics (threshold 
intersection, highest slope, inflection point, maximum value and base logistic value) to estimate 
emergence date. Obviously the emergence date is then estimated by using a correction coefficient. 
The correction coefficient is named the time-lag which corresponds to the interval between the 
emergence date and the temporal metric specific for each method. Hence, the estimated emergence 
date from each profile corresponds to the temporal metric date minus the mean time-lag for this 
method. Subsequently time-lag stability (between the profiles) is the criteria to assess the 
performance between methods and VIs profiles. 

Given that stable time-lag reducing the spread around its value is targeted, two statistical indicators 
are used to discriminate the different methods and VIs: Standard deviation (SD) and median 
absolute deviation from the median (MAD). In particular, SD is used for measuring the dispersion of 
the emergence date estimations around the mean time-lag but it is very sensitive to outliers. 
Therefore, MAD is incorporated as addressed by Varmuza and Filzmoser (2016). 

 MAD = b × median (| (xi − median (xn)|)  

with, xn, the n original observations and b, a multiplicative parameter of 1.4826, assuming the 
normality of the data and disregarding the abnormality induced by outliers. 

Altough, utilizing both SD and MAD avoid the outliers affect and treat the data as it has Gaussian 
distribution, significant difference are shown by the two indicators (Leys et al., 2013). 

 

3.3 Time series classification methods 

This subchapter addresses the testing and benchmarking the time series classification methods. This 
benchmark is addressed separately for different thematic fields: Imperviousness (section 3.3.1), 
Forest (section 3.3.2), Grassland (section 3.3.3) , Agriculture (section 3.3.4), and new land cover 
products (3.3.5). For each of the thematic classifications, different inputs, classification methods and 
parameters are assessed. 
 

3.3.1 Imperviousness 

The following subchapters comprise the testing and benchmarking of the time series classification 
methods for HRL Imperviousness.  

3.3.1.1 Description of candidate methods 

The objective of this Work Package is to develop a framework for times series analysis for thematic 
classification based on Sentinel multi-sensors constellation. In this section, the Imperviousness High 
Resolution Layer is addressed. 
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THE MATERIAL AND INPUT DATA 

Following the WP32 and the time series preparation, the pre-processed Sentinel data (both Sentinel-
1 and Sentinel-2) and time series are used for the tests. Pre-processing has been performed by JR, as 
detailed in WP32. 
 
Following the results of the WP31 (separability of the information for thematic classifications), the 
input data selected are constituted by: 

- All the pre-processed Sentinel-1/2 images. The Sentinel-2 sensor system has an overall 
number of 12 bands from 10m to 60m spatial resolution; 

- A subset of the full dataset based on the cloud cover and the useful images; 
- A spectral subset of the full or partial dataset based on specific bands – ECoLaSS bands 

number 2, 3, 4, 7 and 9 – that avoid most band overlaps, thus making the most significant 
spectral extract; 

- And a combination of spectral indices – here, the NDV and the NDBI. 
 
Therefore, the current outcomes of the tests conducted for the WP31 solely rely on multispectral 
information. This kind of information is in fact essential to discriminate landscape elements but is 
not sufficient. A more effective detection could require advanced feature computation, that would 
be able to discriminate objects. A large set of computable variables can be regrouped according to 
their properties as follow:  
 

 Texture and Structure: Texture and structure analysis consists in extracting information on 

the spatial arrangement of pixels. Amongst numerous existing techniques, the following are 

particularly interesting, regarding the discrimination of impervious surfaces:  

o Grey Level Co-occurrence Matrix (GLCM): it is a widely used texture analysis 

technique in remote sensing. It consists in the distribution analysis of co-occurring 

pixel values at a given offset. Numerous indexes are derived from this matrix to 

extract texture properties (Haralick, Shanmugam, & Dinstein, 1973) such as the 

Pantex index extensively used for the extraction of the built-up areas (Pesaresi, et 

al., 2008). 

o Signal decomposition: Signal decomposition techniques are used to provide a multi-

resolution representation of the original image in a series of components related to 

a specific direction. Wavelet and Gabor analysis applied to VHSR images showed 

their efficiency for detecting textured objects (Lefebvre, Corpetti, & Hubert-Moy, , 

2011a), (Lefebvre, Corpetti, & Hubert-Moy, Wavelet and evidence theory for object-

oriented classification: Application to change detection in Rennes metropolitan area, 

2011b). 

o Structural Features Set (SFS): This method is based on a direction lines analysis. It 

implies computing the spectral difference between a pixel and its neighbours for a 

given direction in order to detect whether this pixel lies in a homogeneous area. This 

technique has been successfully applied in urban areas (Huang, Zhang, & Li, 2007). 

The main drawback of these approaches lays in their intense time consumption and their 

requirement for a high level of parameterization that render them intractable for large-area analysis. 

That is why the tests will rather be conducted on different methods: 

 Granulometry by Mathematical morphology: Mathematical morphology is the analysis of 

the image constructions and their distribution at different scale. It consists in simplifying the 

image progressively though the preservation of bright elements (with closing operators) or 

dark elements (opening operators). Amongst numerous existing techniques, the following 
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one is particularly interesting and was testing in phase 1 and implementing in phase 2 in the 

frame of the times series classification methods:  

Differential Attribute Profiles (DAP): Multiscale features often appear as a relevant alternative, with 
Gabor filters and Differential Morphological Profile (DMP) having achieved great classification 
performances. However, even such features come with a significant cost. DMP is relying on a series 
of morphological filters by reconstruction and it has shown for more than a decade its ability to deal 
with VHSR images (Pesaresi & Benediktsson 2001). Recently, an alternative multiscale feature, called 
Differential Attribute Profile (DAP) (Dalla Mura, Benediktsson, Waske, & Bruzzone, 2010) has been 
built upon DMP to achieve more discriminative power, a higher flexibility, for a lower computational 
cost. DAP is very appealing since it is computed from a tree-based image representation that can be 
built with very efficient algorithms (Carlinet & Géraud, 2014). Once the tree is built, the description 
of each pixel (or object, node) is straightforward and relies on the analysis of all its ancestors up to 
the root. As such, it has been embedded in large-scale analysis performed by Joint research Center 
(JRC) such as the Global Human Settlement Layer (Florcyk et al. 2019, Pesaresi et al., 2013) and 
European Settlement Map (ESM Release 2019) (Sabo et al. 2019). 
 
The training data chosen must therefore be representative of the whole study area in order to cover 
all the reflectance variations of the classes, as well as to go further and take into account the local 
variability of the environmental classes due to the soil type, moisture, etc. The training sites must be 
exempt from anomalies and must be a suitable statistical representation of the area. There must be 
a substantial number of them. That is why, the High Resolution Layers have been used as training 
data: 

- HRL Imperviousness 2015; 
- HRL Forest 2015; 
- HRL Grassland 2015; 
- HRL Water and Wetness 2015; 
- HRL Small Woody Features 2015. 

 
The sampling design refers to the protocol whereby the training samples are selected. A probability 
sampling design is preferred for its objectivity. “Simple random, stratified random, clustered random 
and systematics designs are all examples of probability sampling designs” (Stehman & Czaplewski, 
1998). For the purpose of the tests, a stratified random approach, based on the HR Layers, has been 
preferred. 

THE CANDIDATE METHODS 

The time series classification methods can be divided into two categories: 
- The mono-temporal pixel-based classification, which is performed for each image of the 

time series selected (cloud-coverage based); 
- The multi-temporal pixel-based classification, which is performed on a full stack of this 

selection of images to reconstruct a one-year time composite time series to take advantage 
of the phenology of inter-yearly and intra-yearly seasonal dynamics. The algorithms are 
based on statistical metrics derived from this yearly time series (median, min, max, standard 
deviation). 

 
Multiple algorithms could be used to map artificial lands. Classification methods range from 
unsupervised algorithms such as K-means to parametric supervised algorithms such as maximum 
(Jensen, 2005); to machine learning algorithms such as artificial neural networks (Mas & Flores, 
2008), decision trees (Breiman 1984), Support Vector Machines (Mountrakis, Im, & Ogola, 2011) and 
ensembles of classifiers such as Random Forest (Breiman 2001). A selection of these best algorithms 
for classification has been made, specially adapted for the imperviousness topic: 
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- K-means; 
- Support Vector Machine (SVM); 
- Random Forest (RF); 
- Artificial Neural Networks (ANNs); 
- Active learning (AL). 

 
The methods selected are pixel-based classifications based on two fundamental principles: all the 
objects (or pixels) of the same class are characterized by identical spectral signatures and all the 
signatures of the object classes are perfectly distinct from each other. Commonly, there are two 
classification methods based on the pixel from which all the variants are derived. These are 
supervised (SVM, RF and NNs) and unsupervised classifications (K-means). 
 
Specifically, Random Forest (RF), Support Vector Machines (SVM) are supervised tree based 
classification approaches. In our study case, these methods were applied to create the updated 
built-up mask 2017 in phase 1. Their objectives are to find and recognize patterns in data in order to 
analyze and classify it as seen in studies like (Gilsason, Benediktsson, & Sveinsson, 2006), (Rodriguez-
Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012), (Tan, Steinbach, & Kumar, 2006), 
(Lary, Alavi, Gandomi, & Walker, 2015) and (Camp-Valls & Bruzzone, 2009) to take a few examples. 
During phase 2, Active Learning (AL) method firstly tested over the South-West demo site was 
successfully implemented to produce the 2018 masks over other demonstration sites. 
 

K-MEANS 

The K-mean clustering algorithm is one the most popular classifier in remote sensing. It assumes that 
features associated with each class are distributed according to a Gaussian distribution. Results are 
then easy to understand but it can lead to spurious results if the data is not normally distributed. 
This method is a pixel-based unsupervised and iterative classification algorithm based on spectral 
information and similarity. In fact, in order to reduce the variability within each cluster (based on 
sums of square distances (errors) between each pixel), the algorithm performs two steps iteratively: 

- Reassign data points to the cluster whose centroid is closest; 
- Calculate new centroid for each cluster. 

 
K-means classification automatically identifies groups (or classes) on the basis of the spectral 
information of the pixels. These classes are then associated with types of land use in order to 
produce the map. This classification is made without any information a priori on the nature of the 
objects to be classified. The k-means assumes that the number of clusters is known a priori. 
 
Therefore, multispectral data is most commonly used for this type of classification as it enables the 
differences of the signatures between the objects to be best exploited.  
 
Even if this algorithm is used in studies for the detection of built-up (Jensen, 2005) (Lu & Trinder, 
2006), the K-means classification tends to be not completely suitable as unsupervised classification 
requires a post priori interpretation of the terrain or other reference data signified by the classes 
obtained. K-means method is therefore not worthwhile to be tested. Supervised classifications are 
much more adapted. 
 
Indeed, the following three methods require a set of training data to be defined and established. 
Basically, this set of training data enables a library to be established based on the spectral signature 
types for each class which needs to be extracted. The spectral signature of each pixel of the image is 
analysed and compared to the signature types established initially for each class. Assigning a pixel to 
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a given class is based on criteria which complies with the decision rules and algorithms (whether 
parametric or non-parametric), ultimately resulting in the image to be split into groups. 
 
Studies tend to show that these methods are more accurate and efficient compared to conventional 
algorithms such as K-means. These algorithms can deal with large multi-dimensional and complex 
data. Moreover, these methods have been used for large area mapping including human settlement 
and imperviousness areas (Hansen et al. 1996, Pesaresi et al. 2008, Pesaresi et al. 2013, Kemper et 
al. 2015). 
 

SUPPORT VECTOR MACHINE (SVM) 

Support vector machines is a supervised non-parametric statistical learning technique; therefore, no 
assumption is made on the underlying data distribution, contrary to the previously mentioned 
method. This is an advanced classifier representing input data in a specific feature space within 
which each class is ‘easily’ separable. The prime advantage of the SVM classification is that it 
requires very few parameters. However, SVM is complicated to implement due to the large number 
of parameters that need to be adjusted and is difficult to automate (Mountrakis, Im, & Ogola, 2011). 
Additionally, this algorithm has a tendency to over-fit the data. 
 

RANDOM FOREST (RF) 

Random Forest combines many decision trees to obtain better predictive performance. Each 
decision tree is calibrated on a selection of random subset. Such algorithms such as RF have recently 
received increasing interest (Rodriguez-Galiano et al. 2012, Breiman, 2001) because they are 
reputed more accurate and robust to noise than single classifiers (Shang & Breiman 1996). The 
philosophy behind classifier ensembles is based upon the principles that a set of classifiers perform 
better than an individual classifier can. Breiman introduced RF in 2001 which presents many 
advantages for its application in remote sensing: 

- efficiently on large data bases; 
- thousands of input variables without variable deletion; 
- estimation of what variables are important in the classification; 
- relatively robust to outliers and noise; 
- computationally lighter than other tree ensemble methods (e.g. Boosting); 
- not sensitive to overtraining. 
 

A RF consists of a combination of classifiers where each classifier contributes with a single vote to 
the assignation of the most frequent class detected for the input vector. The fact that it is a 
combination of many classifiers confers RF some special characteristics which make it substantially 
different to a traditional classification trees (CT). A RF increases the diversity of the trees by making 
them grow from different training data subsets created through. 
 

ARTIFICIAL NEURAL NETWORKS (ANNS) 

Neural networks consist of a set of adaptive functions (neurons) able to approximate a non-linear 
system. Neural networks algorithms are supervised classifiers particularly suitable when a large 
quantity of samples is available (Benediktsson, Swain, & Ersoy, 1990). Indeed, Artificial Neural 
Networks (ANNs) are computing systems inspired by the biological neural networks that constitute 
animal and human brains. Such systems progressively improve performance on tasks by considering 
examples, generally without task-specific programming, but carefully tailored to achieve one sole 
goal. These methods work without any a priori knowledge and evolve their own set of relevant 
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characteristics from the learning material that they process – as explored in (Kemper et al. 2015) or 
(Lefebvre et al. 2016). 
 
However, such as SVM, neural networks are complicated to implement due to the large number of 
hyperparameters that need to be adjusted and are thus difficult to automate. Those algorithms are 
also prone to over-fit the data. 
 

ACTIVE LEARNING (AL) AND DIFFERENTIAL ATTRIBUTE PROFILES (DAP) 

Production of Land Cover maps is usually achieved with selection of reference (or training) data, 
supervised classification, and manual map refinement/correction. The classification accuracy is 
directly related to the quality of the training samples, i.e. their ability to represent the data to be 
classified. Collecting training samples is done through a costly operation consisting of manually 
labelling the pixels. Furthermore, such pixels may not be representative of the land cover classes, 
thus requiring important corrections in the post processing step. To alleviate these issues, active 
learning has been introduced a couple of decades ago, and used in remote sensing since more than 
10 years (Tuia, Ratle, Pacifici, Kanevski, & Emery, 2009). It works in both interactive and batch mode. 
In the former case, the user is given some specific pixels to label (e.g. by photo-interpretation), while 
in the latter case only relevant samples from the training sets will be used (leading to a better 
modelling of land cover classes as well as a more efficient classification process). It has been a very 
active field of research (Tuia, Volpi, Copa, Kanesvski, & J., 2011) reaching similar accuracies than 
supervised classifiers but with only 5 to 10% of the training samples. It is now considered as a well-
established framework (Crawford, Tuia, & Ynag, 2013). Recent developments are related to large-
scale analysis and domain adaptation (Alajlan, Bazi, AlHichri, Melgani, & Yager, 2013) or multiscale 
classification (Zhang, Zhu, Zhang, & Du, 2016). 
 
Following the approach mono-temporal for which a classification is performed for each image of the 
time series, it is required to fuse them to provide a unique map, synthetizing all information. 
 
Nevertheless, because of the different parameters of associated images (spectral and spatial 
resolution, acquisition date, cloud cover, etc.) and algorithms, their classification may provide results 
associated with various levels of quality. Although selecting the best result among all available 
classifications would seem a rational approach, combining them by taking into account their 
qualities should make it possible to reach an even higher level of accuracy. This is the idea behind 
the concept of data fusion. A large number of techniques is available to fuse data. Two main groups 
of techniques can be distinguished, based on: 

- The probability theory, such as Kalman filter and other data assimilation techniques 
depending on the presence of models for sensors; 

- The evidence theory, where each decision is represented with a belief function associated 
with uncertainties. In this family, we find Dempster–Shafer Theory (DST).  

 
In a remote sensing context, we rely on evidence theory and in particular on the Dempster–Shafer 
Theory of evidence (DST). The DST is based on a Bayesian approach and fuses a set of mass functions 
issued from various sources of observations associated with a weighted belief on some hypotheses. 
A key advantage is that uncertainty (the union of all hypotheses for a given pixel) is accurately 
managed by the Dempster’s fusion rule. 
 
Regarding the principles behind the algorithm, for each pixel, the class label for which the belief 
function is maximal is selected. This belief function is calculated by the Dempster Shafer 
combination of degrees of belief, also referred to as masses, and indicates the belief that each input 
classification map represents for each label value. Moreover, the masses of belief are based on the 
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input confusion matrices of each classification map, either by using the “precision” rates, “recall” 
rates, “overall accuracy”, or the “kappa” coefficient. Thus, each input classification map needs to be 
associated with its corresponding input confusion matrix file for the Dempster Shafer fusion. 

DLR SETTLEMENT EXTENT AND GROWTH CLASSIFIER 

The 2017 settlement extent product is generated by exploiting multi-temporal Sentinel-1 (S1) radar 
and Sentinel-2 (S2) optical data. The rationale of the adopted methodology is that the temporal 
dynamics of human settlements in remote sensing imagery are distinct from all other land-cover 
classes (e.g., vegetated and cultivated areas are prone to multiple changes over 1/2-year timeframe, 
whereas this generally does not occur for built-up structures). 
 
Regarding the SAR data, Ground Range Detected S1 scenes acquired at high resolution in 
Interferometric Wide Swath Mode (IW GRDH) are used. Each scene is pre-processed by means of the 
SNAP software available from ESA; specifically, this task includes: orbit correction, thermal noise 
removal, radiometric calibration, Range-Doppler terrain correction and conversion to dB values. 
Scenes acquired with ascending and descending pass are processed separately due to the strong 
influence of the viewing angle in the backscattering of built-up areas. As is typical for urban 
applications, the VV polarization contains most of the relevant information regarding urban 
structures; hence the classifier relies on VV data only. As a means for characterizing the behavior 
over time, the backscattering temporal maximum, minimum, mean, standard deviation and mean 
slope is derived for each pixel. The temporal features are complemented with texture information is 
which are helpful in the identification of lower-density residential areas; in particular, the coefficient 
of variation (COV) of the temporal mean backscattering is computed, which is defined for each pixel 
as the ratio between the local standard deviation and the local mean calculated over a 5x5 spatial 
neighborhood.  
 
Concerning optical data, only Sentinel-2 scenes with cloud cover lower than 60% are taken into 
consideration. Data are calibrated and atmospherically corrected using the Sen2Cor software. Next, 
a series of six spectral indices suitable for an effective delineation of settlements are extracted; 
these include the Normalized Difference Built-Up Index (NDBI), the Modified Normalized Difference 
Water Index (MNDWI) and the Normalized Difference Vegetation Index (NDVI). For all of them, the 
same set of five key temporal statistics used in the case of S1 data are generated for each pixel in the 
AOI. Moreover, to improve the detection of suburban areas, for each of the 6 temporal mean indices 
also the corresponding COV is computed in a neighborhood of 3x3 pixels. 
 
To identify reliable training points for the settlement and non-settlement class, a strategy has been 
designed which jointly exploits the temporal statistics computed for both S1 and S2 data, along with 
additional ancillary information. In the case of optical data, in general most settlement pixels can be 
effectively outlined by properly jointly thresholding the corresponding NDBI, NDVI, and MNDWI 
temporal mean; likewise, this holds also for non-settlement pixels. Nevertheless, since all three 
spectral indices affected by the presence of vegetation, absolute threshold values are not universally 
effective since vegetation strongly varies depending on climate. To overcome this drawback, by 
accounting for the well-established updated Köppen Geiger climate classification, for each zone 
specific thresholds have been determined for outlining both candidate settlement and non-
settlement training samples. Furthermore – in the reasonable hypothesis that the higher is the 
number of cloud/cloud-shadow free acquisitions, the more robust are the corresponding temporal 
statistics – all pixels whose number of Sentinel-2 clear-sky acquisitions are lower than 5 are 
excluded. 
 
Regarding SAR data, it generally occurs that the temporal mean backscattering of most settlement 
samples is sensibly higher than that of all other non-settlement classes. Accordingly, samples whose 
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temporal mean backscattering (either in the case of data acquired in ascending and descending pass) 
computed from more than 4 scenes is: i) lower than -8.5 dB are not eligible to be labelled as 
settlement training samples; and ii) greater than -11 dB are not eligible to be labelled as non-
settlement training samples. Finally, it is worth noting that in complex topography regions: i) radar 
data show high backscattering comparable to that of urban areas; and ii) bare rocks are present, 
which often exhibit a behaviour similar to that of settlements in the multispectral based temporal 
statistics. Accordingly, to exclude these from the analysis, all pixels are masked whose slope - 
computed based on SRTM 30m DEM for latitudes between -60° and +60° and the ASTER DEM 
elsewhere - is higher than 10 degrees. 
 
Support Vector Machines (SVM) with Radial Basis Function (RBF) Gaussian Kernel are used in the 
classification process. However, as the criteria defined above for outlining training samples might 
result in a high number of candidate points, for AOIs up to a size of ~10000 km² the most effective 
choice proved extracting 1000 samples for both the settlement and non-settlement class. However, 
since results might vary depending on the specific selected training points, as a means for further 
improving the final performances and obtain more robust classification maps, 20 different training 
sets are randomly generated and given as input to an ensemble of as many SVM classifiers. Then, a 
majority voting is applied and each pixel is finally associated with the settlement class only in the 
case it is labeled as settlement in at least 11 over 20 of them. 
 
It is worth noticing that the stacks of S1- and S2-based temporal features are classified separately as 
this proved more effective than performing a single classification on their merger. 
 
In both cases, a grid search with a 5-fold cross validation approach is employed to identify for each 
training set the optimal values for the learning. The values resulting in the highest cross-validation 
overall accuracy are selected and used for classifying the corresponding AOI. In particular, this is 
carried out by employing the largely employed open source C++ library libSVM. 
 
A final post-classification phase is dedicated to properly combining the S1- and S2-based 
classification maps and automatically identifying and deleting potential false alarms. To this purpose, 
an updated version of the post-editing object-based approach adopted in the production of the 
GUF2012 has been used. Specifically, it consists of two phases. First, segmentation is performed for 
categorizing each cluster of connected pixels in the two classification maps as individual image 
objects; then, a ruleset is employed for selecting whether: i) to combine the S1- and S2-based 
objects; ii) to keep just one; or iii) to discard both of them. The final classification map is given by the 
merger of the objects preserved in the S1- and S2-based classification maps. 

DLR IMPERVIOUSNESS PROCESSOR 

Urban growth is associated not only to the construction of new buildings, but – more in general – to 
a consistent increase of all the impervious surfaces (hence also including roads, parking lots, squares, 
pavements or railroads), which do not allow water to penetrate, forcing it to run off. To effectively 
map the extent of all such areas is then of high importance as it is related to the risk of urban floods, 
the urban heat island phenomenon as well as the reduction of ecological productivity. Moreover, 
monitoring the change in the imperviousness over time is of great support for understanding, 
together with information about the temporal evolution of the extent of urban areas, also more 
details about the type of urbanization occurred (e.g., if areas with sparse buildings have been 
replaced by highly impervious densely built-up areas or vice-versa). 
 
To this purpose an imperviousness product is generated by properly exploiting S2 multi-temporal 
imagery acquired over the study area within a given time interval of interest in which no relevant 
changes are expected to occur (typically a time period of 1-2 years allows to obtain very accurate 
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results). For all the considered scenes, cloud masking and, optionally, atmospheric correction are 
performed. Next, the NDVI is extracted for each image. Since the NDVI is inversely correlated with 
the amount of impervious areas (i.e., the higher the NDVI, the higher the expected presence of 
vegetation, hence the lower the corresponding imperviousness) the core idea is to compute per 
each pixel its temporal maximum which depicts the status at the peak of the phenological cycle. It is 
worth noting that for different pixels in the study area, different number of scenes might be 
available. However, in the hypothesis of a sufficient minimum number of acquisitions for computing 
consistent statistics, this does not represent an issue. Moreover, in this framework it is also possible 
to obtain spatially consistent datasets to be employed for the desired analyses even when 
investigating large areas. Areas associated with impervious surfaces are then extracted at high 
spatial resolution [e.g., by photointerpretation of VHR imagery, the analysis of OpenStreetMap 
layers or information derived from in-situ campaigns] in various parts of the study region and then 
rasterized and aggregated at the Sentinel-2 10m spatial resolution. A support vector regression 
module is then employed for properly correlating the resulting training information with the 
temporal maximum NDVI to finally derive the percent impervious surface (PIS) for the entire area of 
interest. 

3.3.1.2 Benchmarking criteria 

Benchmarking is conducted in two steps: 
- Validation of the products based on visual check also known as “look-and-feel” to eliminate 

and exclude obvious methods/algorithms that present poor results and then, 
- Assessment of layers using validation sites to perform a thematic accuracy measurement 

using the current metrics such as: user, producer accuracies or omission and commission 
errors. 

 
The look-and-feel is a visual comparison between the resulting classification and a reference map: 
here the HRL IMD 2015 is selected, as seen with validation points on the Figure 3-28, since few 
changes is expected between the year 2015 (sometimes using data from 2016) and the year 2017. 
 
The validation approach provides guidance on how the classification results will be validated by 
defining suitable indicators or metrics. Classification correctness should be evaluated using 
misclassification rate and/or misclassification matrix. Thematic accuracy cannot be subjected to an 
exhaustive check. A thorough thematic assessment would imply a very time-consuming work and 
therefore high costs. Misclassification rate is estimated by sampling and product information is 
compared to reference data. The aim is to provide a description of suggested procedures for a 
scientifically and statistically sound sampling scheme for assessing the thematic quality of the 
Imperviousness products obtained in the tests. 
 
Thus, thematic accuracy assessment has three components: (i) the sampling design, (ii) the response 
design and (iii) the estimation and analysis procedures. 
 

(i) The stratification and the sampling design primarily consist in selecting an appropriate 
sampling frame and sampling units. These sampling units can either be “defined on a 
cartographic representation of the surveyed territory” (Gallego, 2004), in which case it is 
an area frame, or on a list of the features. According to this study, area frames give a 
better representation of the population as the spatial dimension is kept. 

 
In an area frame, sample units can be points, lines (often referred to as transects) or 
areas – often referred to as segments, described in (Gallego, 1995). The first step is to 
define the AOI for which the accuracy assessment is to be reported and the type of 
sample units. For the majority of cases, point samples will be used, but areas or 
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segments may be used in specific cases such as when not only thematic accuracy needs 
to be reported, but also the geometry of mapped objects. Polygons have also the 
drawback of being specific to a single map. In case of changes, the sample may not be 
adapted anymore. Points are considered as the most appropriate unit for our tests. 

 
Sampling design refers to the protocol whereby the samples are selected. A probability 
sampling design is preferred for its objectivity. “Simple random, stratified random, 
clustered random and systematics designs are all examples of probability sampling 
designs” (Stehman & Czaplewski, 1998). Even though a simple random design is easy to 
implement, its main drawback lies in the fact that some portions of the population may 
not be adequately sampled. Cluster sampling is often used to reduce the costs of the 
collection of reference data, but does not resolve geographic distribution problems. A 
systematic approach would solve this problem, yet it is not appropriate if the map 
contains cyclic patterns. A stratified approach consists in allocating a pre-defined 
number of samples per land-cover class. As explained in Stehman’s paper, stratification 
ensures that each class is correctly represented. 
 
The validation approach chosen combines random and stratified approaches and 
benefits from the advantages of both of them. 
For the purpose of the tests, a stratification is applied based on a series of omission and 
commission strata: 

o Commission: Imperviousness Degree 1-100% in the layer 2015 (historical layers) 
o Omission: Imperviousness Degree 0% in the layer 2015  

 
The HR Layers from previous productions of 2015 are used in order to perform the stratification, as 
seen in Figure 3-28. 
 

 

Figure 3-28: Validation samples overlaid on the HRL IMD 2015, reference map. 
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(ii) The response design “is the protocol for determining the reference land cover 
classification of a sampling unit” (Stehman & Czaplewski, 1998). 
 
The datasets against which the interpretation is performed are divided in two main 
groups, guiding data and reference data. The guiding data used in the production of the 
classifications are the re-processed HR Sentinel-2 data. The reference data provide more 
spatial details and stronger landscape context to the assessment. The available 
reference data are: 

- Bing maps image / cartography layer 
- Google Earth image / cartography data 

 
(iii) The density values are not directly assessed, only the binary built-up mask. 

 

Thematic accuracy is usually assessed based on the construction of a confusion or error matrix made 
out of the results of the samples interpretation. 
 
A threshold is applied to the density values for reference and map data to produce binary attributes 

of built-up for both the reference and map data layers. For IMD, the threshold is set to 30 % with 

density values lower than 30 % classified as 0 (non-built-up) and density values greater than or equal 

to 30 % classified as 1 (built-up). The minimum acceptable thematic accuracy of 90 % should be 

reached for both omission and commission errors for class 1 (built-up).  

Regarding the density values, a scatterplot extracted from the sample units for both the reference 
and prototype Is made with a view to assess the correlation between reference and map values and 
identify any systematic bias (slope and intercept of the regression line significantly different for 1 
and 0 respectively). A scatterplot is a way of displaying data against Cartesian coordinates to show 
and compare values for two variables within a dataset. The data is displayed as a series of points, 
where the x and y locations relate two variables assigned to a particular recording instance, in this 
case a PSU. The available measurements for each PSU are the reference data and the mapped value 
from the product. To quantitatively summarise the results displayed in the scatterplots above a 
linear regression analysis is performed to estimate the relationships between the reference and 
mapped product information. The analysis produces a coefficient of determination (R2) which is 
gives information about the goodness of fit of the estimated regression model. In this case as the 
reference and map information are meant to represent the same information then it is useful to also 
consider the slope and intercept of the estimated regression model. The slope should therefore 
approach 1 and the intercept should be close to 0 for the required relationships. Deviations from the 
expected values will give an indication of the correspondence of the reference and mapped 
imperviousness data. 

3.3.1.3 Implementation and results of benchmarking 

As describe before, the benchmarking is only done on Sentinel-2 cloud-free images and they offer a 
high resolution (spectral and spatial). The implementation of the benchmarking has been done in 
phase 1 on the test site in South-West site of France, over the tiles 30TYP and 31TCJ. Based on the 
outcome of the phase 1, the section 3.3.1.4 describes the experimental setup of the phase 2 on the 
3 test sites South-West, Central and South-East. 
 
We saw that various classification methods, input data set, fusion algorithms can be explored 
regarding the thematic classification. 
 
The following tests proposed for the determination of the algorithms used are related to: 
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- the various Dempster-Shafer fusion algorithms to merge the classifications, as listed in 
the Table 3-4; 

the classification algorithms themselves, as listed in  

 

- Table 3-5; 
- the various input data that can be feed to the classification algorithms, as listed in Table 

3-6. 
- the various input sensor (Sentinel-1 or 2) that can be used for the classification 

algorithms, as listed in Table 3-7. 
 
 
 

Table 3-4: Tests related to the Dempster-Shafer fusion algorithm choice. 

 

 

 

Table 3-5: Tests related to the classification algorithm selection. 
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Table 3-6. Selection of the best input dataset based on the results given by various classifications. 

 
 

Table 3-7: Selection of the best sensor dataset based on the results given by SVM. 

 
 
The results of the tests for the determination of the algorithms used for the Dempster-Shafer fusion 
of the classifications are quantified in the Table 3-9 and visually assessed in the Table 3-8. 
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Table 3-8: Visual check for the Demspter-Shafer fusion algorithms based on the precision rate, the recall 

rate, the overall accuracy and the kappa coefficient – the D-S fused result using the overall accuracy is the 

closest to the HRL IMD for 2015. 
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Table 3-9: User and producer accuracy for the diverse Dempster-Shafer algorithms. 

 
The best algorithm for the DST data fusion tends to be the one using the “overall accuracy” metric. 
Indeed, there is a good balance between the user and the producer accuracies (e.g. commission and 
omission errors). In terms of user accuracy (commission error), the best algorithm seems to be 
obtained with the “overall accuracy” component. On the contrary, in terms of producer accuracy 
(omission error), the best algorithms are obtained with the “precision” and “recall” rates. However, 
it is important to note that these technics show very high level of commission errors clearly not 
suitable. 
 
The results of the tests for the determination of the best classification are quantified in the Table 
3-11 regarding the use of the full dataset for one year and in the Table 3-13 for a reduced dataset 
input while being visually assessed in the Table 3-10. 
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Table 3-10: Visual check for the various classification algorithms and different input datasets – the SVN 

classifier gives the best result compared to the HRL IMD layer for 2015. 
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Table 3-11: Full dataset of images for the yearly time series with all spectral bands results 

 
 

Table 3-12: DLR Settlement Extent and Growth Classifier 

 
 

Table 3-13: Subset dataset (36 best images) with all spectral bands results 

 
 
The best classifier appears to be the Active Learning which shows a good balance between the user 
and the producer accuracies. Then, the Support Vector Machine shows the next best results but with 
high commission errors. The random forest and neural network classifiers present high producer 
accuracy but very high rate of commission errors. 
 
The results of the tests for the determination of the best input datasets fed to mono-temporal 
classifications, fused with the DS algorithm based on the overall accuracy, are quantified in Table 
3-15 while being visually assessed in the Table 3-14. 
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Table 3-14: Visual check for different input datasets – the full dataset input gives the best result compared 

to the HRL IMD layer for 2015. 
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Table 3-15: Overall results for the selection of the proper input data 

 
 
Regarding the input data for classification, the tests show that the best set for the classification is 
the one with all the data pre-processed available, closely followed by the data subset with a 
selection of the best available cloud-free images.  
 
The result of the imperviousness mapping is presented in Figure 3-29. The layer is a continuous 
raster with values between 0 and 100 indicating high (red) and low (green) density of impervious 
surface area.  
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Figure 3-29: Subset of Imperviousness Layer compared with Sentinel-2 imagery. 

 

 
The results of the tests for the determination of the best sensor are quantified in the Table 3-16 
regarding the use of either Sentinel-1 data, or Sentinel-2, or even a combination of both time series 
while being visually assessed in the Table 3-17. 
 
 

Table 3-16: Impact of the sensor used for the SVM classification 
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Table 3-17.  

 

Figure 3-30: Visual check for different input datasets – the combination of both time series, from S1 and S2, 

as input gives the best result compared to the HRL IMD layer for 2015. 

3.3.1.4 Experimental Setup for phase 2 

This section shows the phase 2 implementation of the Imperviousness products over the 3 test sites, 
both the status layer IMD and the built-up layer IBU. Firstly, the integrated EO and ancillary data are 
described, followed by explaining the pre-processing steps, the demonstration of the classification 
results of the actual test sites including the accuracy assessment.  

3.3.1.4.1 Input Data and Data Integration 

Based on the outcomes of the phase 1 (respectively Task 3 and Task 4), a multi-sensor approach 
combining Sentinel-1 and Sentinel-2 was adopted in 2 to perform the classification that finally leads 
to the impervious prototypes. 
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SAR DATA - SENTINEL-1 

The Sentinel-1 sensor system has an overall number of 2 bands (both polarisation signals VV and VH) 
at 10m pixel spacing. Pre-processing has been performed following the processing chain as detailed 
in WP 32 [AD 07]. Selected scenes cover the time frame from 01-January to 15-November 2018 and 
represent a total of 1 836 Sentinel-1 images which were used to produce the impervious prototype. 

OPTICAL DATA - SENTINEL-2 

The South-West test site comprises two adjacent Sentinel-2 tiles (30TYP, 31TCJ).  
The Central test site is composed of two adjacent Sentinel-2 tiles (32UNU, 32TN,).  
The South-East test site is made of two adjacent Sentinel-2 (34TFM, 34TFL). 
All Sentinel-2A+B data in 10m resolution have been pre-processed. 
 
The Sentinel-2 sensor system has an overall number of 12 bands from 10m to 60m spatial resolution. 
For the ECoLaSS processing, only the 10m bands are used, which are in total 4 bands. The list of the 
used bands with their central wavelengths and abbreviations is shown in Table 3-18. 
 

Table 3-18: Used Sentinel-2 reflectance bands 

Sentinel-2 Bands Description Central Wavelength (µm) Stack 
number 

Band 2  Blue 0.490 1 

Band 3  Green 0.560 2 

Band 4  Red 0.665 3 

Band 8 NIR 0.842 4 

 

Selected scenes cover the time frame from 01-January to 14-November 2018 and represent a total 
of 775 Sentinel-2A+B images which were used to produce the impervious products for all three test 
sites. 

3.3.1.4.2 Pre-Processing methods for optical time series 

As mentioned in the WP 32, the processing methods for optical time images include the generation 
of spatio-temporally consistent optical images with top of atmosphere reflectance values. Therefore, 
the following pre-processing steps are applied:  
 

 Atmospheric correction, 

 Topographic normalisation,  

 Cloud, cloud shadow and snow masking.  

ATMOSPHERIC CORRECTION 

The Sentinel-2 data produced by CNES’ Theia Land Data Centre and available for download are 
corrected for atmospheric effects, including adjacency effects. These atmospheric corrections 
include compensating the light absorption by air molecules and the light scattering by molecules and 
aerosols. 
 
Several models may be used to perform atmospheric corrections. In the case of the MAJA software, 
the MACCS processor is the model used. It pre-computes "Look-up Tables" using an accurate 
radiative transfer code (Successive Orders of Scattering), that simulates the light propagation 
through the atmosphere. The MACCS/MAJA method combines different approaches to obtain robust 
estimates of aerosol optical thickness.  
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TOPOGRAPHIC NORMALISATION  

A topographic correction is necessary if the test sites are characterized by mountainous terrain as it 
is the case for the South-West Demonstration site. The topography can significantly influence the 
radiometric properties of the signal received from the satellite (see Wulder and Franklin, 2012). This 
effect is caused by the different lighting angles resulting from the topography (cf. Gallaun et al., 
2007). The aim of a topographical correction is to compensate for the differences in reflectance 
intensity between the areas with varying slope, exposure and inclination and to obtain the radiation 
values that the sensor would measure in the case of a flat surface. 
 
The Sentinel-2 data using the MAJA software and available for download are corrected from the 
topographic effects. 

CLOUD, CLOUD SHADOW AND SNOW MASKING 

The MAJA cloud detection method is based on a number of threshold tests using the cirrus band 
(B10). Additionally, multi-temporal tests are carried out to detect clouds by measuring a steep 
increase of the blue surface reflectance. Finally, the correlation of the pixel neighbourhood with 
previous images is calculated to avoid over detections based on the assumption that two different 
clouds at the same location on successive dates will not have the same shape. If a large correlation is 
observed, the pixel is excluded from the cloud mask as it is likely to be a bright land surface. 
 

3.3.1.4.3 Pre-Processing methods for SAR time series 

Pre-processing has been performed with the Remote Sensing Software Graz (RSG) module “Space 
Suite”. It comprises the following processing steps: 
 

 Image ingestion: bulk import of original images to RSG *.rsx files, orbit update (precise 
orbits), automated combination of adjacent scenes 

 Image pre-processing: definition of image frame extent (based on selected granules), full 
image resolution, no speckle filtering, no multitemporal filtering, radiometric terrain 
correction to gamma naught based on SRTM 4.1 model (Central demonstration site: also 
tests with sigma naught), combine polarizations in one image stack (band1: VH; band2: VV) 

 Orthorectification: based on an interpolated Digital Elevation Model (DEM) (SRTM 4.1), 
output image resolution is 10m, output image resampling method (nearest neighbour), 
coordinate system: UTM WGS84 

 Calculation of incidence angle map 
 

3.3.1.4.4 Experimental Setup 

The developed processing chain is able to process a large amount of input data within a reasonable 
amount of time to provide the classification results. The achieved level of automation ensures the 
effective application of the process to map impervious areas of almost the entirety of Europe.  
 
The workflow/methodological steps for the production of the Imperviousness products is listed 
hereafter: 

 
1. Set-up of reference databases for calibration  
2. Production of the Imperviousness 2018 (phase 2) 

a. Data preparation (Sentinel-1, Sentinel-2) 
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b. Biophysical variables and additional image parameters (NDVI, textural metrics for S-
2, time features for S-1) 

c. Derivation of classification training samples from additional reference data (HR 
layers) 

d. Production of initial built-up masks for 2018 by automated supervised classification 
(Active learning) 

e. Fusion of S-1/S-2 built-up masks 
f. Absolute calibration of IMD2018 
g. Post-processing (filtering, contextual analysis based on change probability) 
h. Validation 

3. Production of the Built-up 2018 
a. Biophysical variables and additional image parameters (NDVI, Pantex, textural 

metrics for S-2) 
b. Derivation of classification training samples from additional reference data: Open 

Street Map (OSM) and European Settlement Map (ESM)  
c. Production of initial built-up masks for 2018 by automated supervised classification 

(Active learning) 
d. Post-processing (filtering, contextual analysis) 
e. Validation  

 

3.3.1.4.5 Set-up of reference databases for calibration  

The development of a dataset for calibration of the IMD layers 2018 is needed to provide a 
reference dataset for the absolute calibration of the HRL2018 10m status layer Imperviousness 
degree (1-100%). 
 
The reference imperviousness density values are collected for selected sample cells (PSU of 1ha) 
within the Sentinel-2 tiles. Imperviousness degree levels from 1-100% are obtained for each PSU. 
The sealing Information, sealed surfaces vs. non sealed surfaces, is collected through Secondary 
Sampling Units (SSUs – 5x5 grid) within each PSU. 
 
In order to be a representative methodology, the approach chosen combines random and stratified 
approaches and benefits. The stratification is based on the previous 2015 Imperviousness layer (IMD 
density value [1-100%]). 

3.3.1.4.6 Production of the Imperviousness 2018 

DATA PREPARATION (SENTINEL-1, SENTINEL-2) 

This step includes all the pre-processing required to prepare the data which can be listed as: 
downloading, data and metadata extraction, best-scene selection (based on cloud coverage), layer 
stacking, preprocessing, for S-2 or S-1 – and finally cloud masking for S-2. 
 
For the purpose of the calibration task, the NDVI is derived per single Sentinel-2 image, then 
mosaicked to a maximum NDVI as shown in Figure 3-31. 
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South-East test site 

 

 
Central test site 

 
South-West test site 

 
 

Figure 3-31: 2018 NDVI Sentinel-2 based maximum feature for the year 2018 

 
Following annual SAR features are generated using S-1 data and both polarisation signals (VV, VH) 
including 751 images from 01.01.2018 to 15.11.2018, covering the test sites. Examples for such 
statistical features are presented in Figure 3-32Table 3-19 and Figure 3-32. 
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Table 3-19: SAR annual statistical features. 

feature description 

MIN Minimum 

MAX Maximum 

MEAN Mean 

STD Standard deviation 

 

  

SAR annual minimum feature SAR annual maximum feature 

  

SAR annual mean feature SAR annual standard deviation feature 

Figure 3-32: SAR statistical features (NB: the 4 features have different value ranges and scaling) 

AUTOMATED DERIVATION OF CLASSIFICATION TRAINING SAMPLES  

As input for these machine learning algorithms, a set of training data is required. The training data 
chosen must therefore be representative of the whole study area in order to cover all the 
reflectance variations of the classes, as well as to go further and take into account the local 
variability of the environmental classes due to the soil type, moisture, etc. The training sites must be 
exempt from anomalies and must be a suitable statistical representation of the area. There must be 
a substantial number of them. That is why, the historical High Resolution Layers have been used as 
training data: 
 
Reliable training samples have been derived from relevant in-situ sources: historical HRL 2015 
Imperviousness, Forest, Grassland, Water and Small Woody Features. In order to best reflect the 
different imperviousness classes, an automated random point sampling within buffered IMD 2015 
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has been applied. Samples in non-built-up areas have been selected in different land cover classes 
such as grassland, bare soil, vegetation and water in order to obtain a representative distribution of 
non-imperviousness samples. 
 
Based on the spectral information, biophysical indicators and texture parameters at the training 
sample points, the algorithm ‘learns’ how to classify the features (Tan et al. 2006, Camp-Valls, 2009) 
and identifies the most significant combinations of input parameters to differentiate built-up areas 
from other land cover. 
 
For the purpose of the automated derivation of the training sample, a stratified random approach, 
based on the HRLs, has been preferred. 

PRODUCTION OF INITIAL SEALED AND NON-SEALED MASKS FOR 2018 

The results of the initial Sentinel-2 based sealed and non-sealed mask are shown in Figure 3-33.  
 

 

Central test site 

 

South-East test site  
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South-West test site  
 

Figure 3-33: Sentinel-2 based initial sealed and non-sealed mask for 2018 for the test sites 

ABSOLUTE AND RELATIVE CALIBRATION OF IMD2018 

Besides the production of initial sealed and non-sealed masks for 2018 (previously described), one 
key step in the HRL Imperviousness production is the estimation of the degree of imperviousness 
and linking these IMD measurements over time. Each single pixel in the built-up mask will be 
assigned an imperviousness density value of 1 to 100%. The linkage between the biophysical 
variables and the IMD measurements will be done through an absolute (linking the biophysical 
variables to IMD) and relative calibration procedure. This combination improves the accuracy of 
imperviousness density estimates, correct any over-/underestimation of values and assure 
comparability and consistency over time. 
 
The reference calibration database serves as calibration input for an absolute calibration of the 2018 
IMD measurements. For the prediction of the imperviousness degree, a linear regression method is 
used to model the relationship between the collected reference samples and meaningful metrics 
from the biophysical variables (e.g. NDVImax) derived from the seasonal image composites. The 
established linear equation is applied to transform the input data into imperviousness degree values 
between 1 – 100%. This results in absolutely calibrated IMD measurements derived from the 2017 
and 2018 imagery. 
 
Then, the calibrated 20m IMD 2015 status layer will be used as input to adjust the imperviousness 
density values of 2018 by relative calibration. Indeed, despite the absolute calibration based on a 
well-established procedure (with the use of a reference calibration dataset), there will always 
remain some obvious and local issues in the imperviousness density derivation which will lead to 
wrongly detection changes in the change Layers. The relative approach is so needed to correct these 
local artefacts. 
 
The IMD 2018 values, limited to the newly created 2018 sealed mask, are re-analysed by an 
automatic cross-calibration approach: the IMD 2018 values are compared to the IMD 2015 values 
resampled to 10 meters spatial resolution and further corrected using a rule-based approach. 
Indeed, a filtering approach is needed to adequately map sealing changes. In 20m spatial resolution, 
changes of imperviousness density within sealed areas are not that frequent compared to changes 
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of the sealed area. Despite all the calibration efforts in image pre-processing and subsequent 
adaptation procedures, there will always remain a certain error budget for sealing change detection 
mainly caused by: 
 

 Persisting spectral differences due to even subtle deviations in illumination, shadow effects, 
atmospheric conditions and vegetation status, often in conjunction with: 

 Geometric misalignments of the IMAGE databases. This occurs quite frequently and often 
exceeds a range of 1 pixel (>20m). 

 
Hence, in order to derive a reliable and realistic picture of sealing changes (within existing built-up 
areas), thresholds are applied. Differences of >20% of sealing increase will be considered acceptable 
if a contiguous area of at least 16 (10m x 10m) pixels is concerned. The threshold of 16 contiguous 
pixels permits to overcome the scaling issue (10 vs 20m spatial resolution). Differences <= 20% 
sealing increase will be considered as stable. The special case of imperviousness decrease is rare 
and, if occurring, it will rather be due to a re-greening (full de-sealing) of an impervious surface than 
an actual decrease. With regard to this assumption sealing decrease within built-up areas will only 
be accepted as valid if a remarkable change of 80% decrease takes place. Differences <= 80% sealing 
decrease will be considered as stable. In phase 2, for the South-West prototype, the same rule-based 
approach was applied to correct the 2018 values with comparison to the 2017 IMD values obtained 
in phase 1. 
 
The final results of the implemented Imperviousness layers 2018 for the 3 test sites is shown in 
Figure 3-34. 
 

 
Central test site 

 
South-East test site 
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South-West test site 

 
 

Figure 3-34: Final HRL Imperviousness 2018 layers for the test sites 

 

3.3.1.4.7 Production of the Built-up Layer 2018 

DATA PREPARATION (SENTINEL-1, SENTINEL-2) 

This step includes all the pre-processing mentioned in section 3.3.1.4.2 and 3.3.1.4.3 for Sentinel-2. 
 
For the purpose of the BU layer classification, the PanTex is derived per single S-2 image, as shown in 
Figure 3-35. The PanTex is used as input data along with the 10 m spectral bands for the 
classification. 
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Figure 3-35: 2018 PanTex Sentinel-2 based feature for the Central test site 

AUTOMATED DERIVATION OF CLASSIFICATION TRAINING SAMPLES  

As input for the machine learning algorithms, a specific set of training data, different from the one 
implemented for the sealed surface classification, is also required for the Built-up layer. The Open 
Street Map (OSM) and European Settlement Map (ESM) have been used as training data. 
 
In order to best reflect the different built-up features, an automated random point sampling has 
been applied. Samples in non-built-up areas have been selected in different features/classes such as 
roads, railways or parking lots to obtain a representative distribution of non-built-up samples. 
 
Based on the spectral information, biophysical indicators and texture parameters at the training 
sample points, the algorithm ‘learns’ how to classify the features (Tan et al. 2006, Camp-Valls, 2009) 
and identifies the most significant combinations of input parameters to differentiate sealed areas 
from other land cover. 
 
For the purpose of the automated derivation of the training sample, a stratified random approach, 
based on the HRLs, has been preferred. 

PRODUCTION OF INITIAL BUILT-UP AND NON-BUILT-UP MASK FOR 2018 

The results of the initial Sentinel-2 based built-up and non-built-up mask are shown in Figure 3-36. 
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Central test site  

 

South-East test site  

 

South-West test site 

Figure 3-36: Sentinel-2 based initial built-up and non-built-up masks for 2018 for the test sites 
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POST-PROCESSING  

The post-classification implies post-processing of the layers in order to be spatially consistent with 
the HRL Imperviousness (IMD) layers including: 
 

 Post-processing filtering using the sealed mask. Indeed, built-up pixels which are not sealed 
in the IMD classification should be removed in a post-classification step to ensure the spatial 
consistency between products. 

 

The final results of the implemented Built-up layers 2018 is shown in Figure 3-37. 

 

 
South-West test site 

 
Central test site 
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South-East test site 

 

Figure 3-37: Final HRL Built-up 2018 layers for the test sites 

3.3.1.5 Classification Results and Validation 

This chapter depicts the results of the classification as well as their validation. Firstly, the regression 
analysis is performed (see section 3.3.1.5.1). Then, the thematic accuracies are summarized (see 
section 5.1.2.2). The thematic accuracies are followed by a discussion of the validation results (see 
section 5.1.2.3). 

3.3.1.5.1 IMD 2018 scatterplots & regression analysis 

A scatterplot is a way of displaying data against Cartesian coordinates to show and compare values 
for two variables within a dataset. The data is displayed as a series of points, where the x and y 
locations relate two variables assigned to a particular recording instance, in this case a PSU. The 
available measurements for each PSU are the original reference data (called REFERENCE in each 
figure) and the mapped value from the product (called MAP on the figures). For this validation 
exercise the position / value on the horizontal axis represented the reference information and the 
position / value on the vertical axis represents product (MAP) information. In this way the relation of 
the reference and product information for a point can be compared to a 1:1 line which runs 
diagonally across the scatter plot. The closeness of a point to the point to the 1:1 line is an indication 
of the similarity between the reference and mapped results. The points that lie exactly on the x and 
y axes are related to omission and commission rather than the calibration of the IMD values 
themselves.  
 
The scatterplots presented in Figure 3-38 show very limited scatter of up to 20 % each side of the 
best fit line. There are a few numbers of point on the x and y axes showing commission, where 
sealing is mapped that is not present in reality, and omission, where sealed areas are missed which 
seems to indicate that the commission and omission errors are also limited. It can also be seen that 
the distribution is almost centred on the 1:1 line. 
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The scatterplots and the resulting best fit lines are controlled by the actual geography of the test 
sites. The results for the South-West and South-East show that there are limited number of sealed 
areas, the areas present tend to have low imperviousness values. There are also a few omissions and 
commissions which is highly likely for Mediterranean regions where vegetation is limited and there 
may be extensive areas of bare soils. The Central test site is more representative of Europe as a 
whole and contains significant sealed areas of varying imperviousness.  
 

 
South-West test site 

 
Central test site 

 

 
South-East test site 

Figure 3-38: Scatterplots for the continuous IMD layers 2018 validation 

To quantitatively summarise the results displayed in the scatterplots above a linear regression 
analysis is performed to estimate the relationships between the reference and mapped product 
information. The analysis produces a coefficient of determination (R2) which is gives information 
about the goodness of fit of the estimated regression model. Coefficients of determination closer to 
1 represent a better fit. In this case as the reference and map information are meant to represent 
the same information then it is useful to also consider the slope and intercept of the estimated 
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regression model. The slope should therefore approach 1 and the intercept should be close to 0 for 
the required relationships. Deviations from the expected values give an indication of the 
correspondence of the reference and mapped imperviousness data. 
 
All regression coefficients are greater than 0.80 which indicate a very good relationship between the 
reference and map density values. The lowest value is related to the South-West test site with 
complex landscapes with a R² close to 0.8. Nevertheless, all regression coefficients are greater than 
0.80 which prove the good relationship.  
 
Regression slopes are consistently close to 1 with very few variabilities except for the South-East 
demonstration site (close to 0.75). All slope values are mostly smaller than 1,0 which is mainly a 
result of commission errors (IMD detected in non-sealed areas). The intercept parameter shows 
good values close to 0 but slightly under 0 which is a result of the omission errors (negative 
intercept). 

3.3.1.5.2 Thematic accuracy 

The below confusion matrices give a summary of the internal accuracy assessment of the HRL 
Imperviousness 2018 for the demonstration sites, see Table 3-20,  
Table 3-21 and Table 3-22, respectively for the South-West, the Central and then the South-East test 
sites. 
 

Table 3-20: Confusion matrix of the internal validation of the IMD 2018 in test site South-West (area-

weighted) 

IMD_2018_Testsite_SouthWest_0303
5_10m 

REFERENCE   

Non-Sealed Sealed Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-Sealed 53.64 0.58 54.22 98.92 % 0.37 % 

Sealed 0.88 6.63 7.51 88.32 % 1.84 % 

  

Total 54.52 7.22 61.73 
 

 

Producer Accuracy 
98.39 % 91.90 % 

 
97.63 % 

Overall 
Accuracy 

Confidence Interval 
0.45 % 1.52 % 

 

1.01 % 
Confidence 

Interval 

 

0.99 
F-Score Non 

IMD 

0.90 F-Score IMD 

0.89 Kappa 

 

Table 3-21: Confusion matrix of the internal validation of the IMD 2018 in test site Central (area-weighted) 

IMD_2018_Testsite_Central_03035_1
0m 

REFERENCE   

Non-Sealed Sealed Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-Sealed 60.87 0.58 61.45 99.05 % 0.10 % 

Sealed 0.29 4.68 4.97 94.12 % 1.11 % 

  

Total 61.16 5.26 66.42 
 

 

Producer Accuracy 
99,52 % 88,89 % 

 
98,68 % 

Overall 
Accuracy 

Confidence Interval 
0.09 % 1.77 % 

 

0.18% 
Confidence 

Interval 

 0.99 F-Score Non 
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IMD 

0.91 F-Score IMD 

0.91 Kappa 

Table 3-22: Confusion matrix of the internal validation of the IMD 2018 in test site South-East (area-

weighted) 

 

IMD_2018_Testsite_SouthEast_03035
_10m 

REFERENCE   

Non-Sealed Sealed Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-Sealed 71,92 0,29 72,21 99,60 % 0.04 % 

Sealed 0,29 1,46 1,75 83,33 % 2.28 % 

  

Total 72,21 1,75 73,97 
 

 

Producer Accuracy 
99,60 % 83,33 % 

 
99,21 % 

Overall 
Accuracy 

Confidence Interval 
0.05 % 2.39 % 

 

0.11 % 
Confidence 

Interval 

 

1.00 
F-Score Non 

IMD 

0.83 F-Score IMD 

0.83 Kappa 

 
The below confusion matrices give a summary of the internal accuracy assessment of the HRL built-
up 2018 for the test sites, see Table 3-23, Table 3-24 and Table 3-25 respectively for the South-West, 
the Central and then the South-East demonstration sites. 
 

Table 3-23: Confusion matrix of the internal validation of the BU 2018 in test site South-West (area-

weighted) 

BU_2018_Testsite_SouthWest_03035
_10m 

 

REFERENCE   

Non-built-up Built-up Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-built-up 56,76 0,29 57,06 99,49 % 0.13 % 

Built-up 0,88 3,80 4,68 81,25 % 2.44 % 

  

Total 57,64 4,09 61,73 
 

 

Producer Accuracy 
98,48 % 92,86 % 

 
98,11 % 

Overall 
Accuracy 

0.48% 0.22 % 1.58 % 

 

0.51% 
Confidence 

Interval 

 

0.99 
F-Score Non-

built-up 

0.87 
F-Score Built-

up 

0.86 Kappa 
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Table 3-24: Confusion matrix of the internal validation of the BU 2018 in test site Central (area-weighted) 

BU_2018_Testsite_Central_03035_10
m 
 

REFERENCE   

Non-built-up Built-up Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-built-up 62,35 0,30 62,65 99,53 % 0.09 % 

Built-up 0,59 5,19 5,78 89,78 % 1.66 % 

  

Total 62,94 5,49 68,43 
  

Producer Accuracy 
99,06 % 94,61 % 

 

98.70 % 
Overall 

Accuracy 

Confidence Interval 
0.15 % 1.11 % 

 

0.23 % 
Confidence 

Interval 

 

0.99 
F-Score Non-

built-up 

0.92 
F-Score Built-

up 

0.91 Kappa 

 

Table 3-25: Confusion matrix of the internal validation of the BU 2018 in test site South-East (area-weighted) 

BU_2018_Testsite_South-
East_03035_10m 

 

REFERENCE   

Non-built-up Built-up Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
Non-built-up 72,21 0,29 72,50 99,60 % 0.07 % 

Built-up 0,29 1,17 1,46 80,00 % 2.49 % 

  

Total 72,50 1,46 73,97 
  

Producer Accuracy 
99,60 % 80,00 % 

 
99,21 % 

Overall 
Accuracy 

Confidence Interval 
0.08 % 2.36 % 

 

0.10 % 
Confidence 

Interval 

 

1.00 
F-Score Non-

built-up 

0.80 
F-Score Built-

up 

0.80 Kappa 

 

3.3.1.6 Summary and conclusions 

The analysis performed as part of the phase 2 shows better results for the following set of 
parameters: 
 

- a mono-temporal approach, image-by-image; 
- the use of an active learning; 
- the input being a subset based on the best available cloud-free images with both sensors 

Sentinel-1 and Sentinel-2. 
 
The results are not fully compliant with the actual specifications (both 90% user and producer 
accuracies). Nevertheless, the results nearly meet the threshold. It should be notice that few post-
processing (mostly manual enhancement) has been applied and the results can be easily increased. 
 
The active learning algorithm shows great classification performances whilst being very computer 
efficient, thus substantially reducing processing time overall and dealing with large dataset. In phase 
1, the SVM classifier shows interesting results as an alternative method. 
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The approach based on both sensors Sentinel-1 and Sentinel-2 shows the interest to use data fusion. 
The mono-source approach, based on one HR sensor, Sentienl-1/2, doesn’t seem in fact sufficient. 
The optical time series, in particular, is not dense enough to take advantage of the phenology of 
inter-yearly and intra-yearly seasonal dynamics.  
 
Firstly envisaged, the multi-sourcing approach, with not only one sensor, Sentinel-2, but also other 
sensors including Sentinel-3 or a substitute such as PROBA-V, was not explored due the low spatial 
resolution of these kinds of image. Different studies (Pesaresi, et al., 2013), (Hansen, et al., 2013) 
exploit this multi-source approach to create global built-up maps with remarkable success. 
The realization of those prototypes results has a major impact on the following activities (WP 34 and 
35). 
 
Regarding the Built-up product, it should be noticing the high adding value of the Pantex Index for 
this layer. Actually, test was undertaken based on HR data (Sentinel) but the use of VHR data at 
larger scale for the BU detection should be envisaged since better results are expected as shown in 
Table 3-26 and Figure 3-39 based on a benchmarking performed on a spatial subset in the South-
West test site. 

Table 3-26: Comparison of Built-up Layers based on VHR vs HR data compared 

Test Site User Accuracy Producer Accuracy 

VHR Based 88.89% 99.00% 

HR Based 68.86% 93.59% 

 

 

Figure 3-39: Comparison of Built-up Layers based on VHR vs HR data compared with VHR imagery (Toulouse, 

France) 
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3.3.2 Forest 

Accurate and timely forest type mapping is essential for the assessment of a forest’s biological and 
ecological state and the management of forest resources. The Copernicus HRL Forest has been 
previously produced for the reference years 2012 and 2015, and the reference year 2018 is currently 
under production. The following sections explore methods for improving the HRL Forest 
classification by exploiting the use of dense optical and SAR time series. The aim of this work is the 
automated classification of an improved Tree Cover Mask (TCM) and the status layer Dominant Leaf 
Type (DLT), whereas the first one is used to derive the incremental update Tree Cover Change (TCC) 
for 2017/2018. In that regard, the use of temporal-spectral metrics as classification input features is 
assessed and compared between different sensor data scenarios. 
 
Furthermore, the possibilities and limitations to generate the continuous Tree Cover Density (TCD) 
layer using optical time series data are thoroughly assessed. Tests have been performed in the 
ECoLaSS North test site in Sweden, Central region in Austria/Germany and South-East test site in 
Greece/Bulgaria (see test sites distribution in Figure 1-1).  

3.3.2.1 Description of candidate methods 

According to previous tests and the first prototypic implementation in phase 1, the Random Forest 
classifier was chosen as the best-rated classification algorithm for testing and implementation in 
phase 2. Time features can capture the intensity of significant change information and statistical 
time series properties (section 3.1.4) and have been used as basic input data for thematic 
classification. The Random Forest classifier was applied in a number of experiments using different 
combinations of sensor data (representing different data scenarios) and time periods to benchmark 
their respective feasibility, effort and accuracy in view of the FOR product generation. For generation 
of the continuous-scale Tree Cover Density product in project phase 2, a multiple linear regression 
estimator has been used and different time features and periods have been tested. Testing in 
project phase 2 was characterized by an extension of the observation period with an increased cloud 
cover threshold (60% compared to 50% in phase 1). Table 3-27 provides an overview of the relevant 
parameters in both project phases.  
 

Table 3-27: Sentinel data scenarios and time periods for Forest classification. 

Project Phase 1 Project Phase 2 

Sensor Time Period Cloud Cover Sensor Time Period Cloud Cover 

S-2 01.01.-31.12. 50% 
S-2 
S-1 

15.03.-15.09. 
15.03.-15.09. 

60% 
N/A 

S-2 15.03.-15.06. 50% S-2 01.06.-30.06. 60% 

S-1 15.03.-15.06. N/A S-2 01.07.-31.07. 60% 

S-2 
S-1 

01.01.-31.12. 
15.03.-15.06. 

50% 
N/A 

S-2 01.08.-31.08. 60% 

S-2 
S-1 

15.03.-15.06. 
15.03.-15.06. 

50% 
N/A 

S-2 01.06.-31.08. 60% 

 
According to the TCM and DLT classification tests carried out in WP 33, the use of Sentinel-2 data 
from the spring period was expected to provide the best ratio of high classification accuracy and 
lowest processing cost. On the other hand, the combined use of Sentinel-2 and Sentinel-1 for the 
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same period was expected to provide the highest classification accuracy by concurrent highest 
processing cost. 
 
In summary, the following aspects have been investigated and implemented in the second project 
phase: 

 Including of Sentinel-1 SAR time series data (timely consistent with S-2 features) 

 Integration of additional Sentinel-2 time features, based on spectral bands 

 Improved sampling based on a HRL2015 Sampling Layer 

 Analysis and implementation of different feature selection methods  
 

3.3.2.2 Benchmarking criteria 

In addition to a traditional classification accuracy assessment (Overall accuracy, class specific 
producer and user accuracy, Kappa, F-score) several other criteria were used to evaluate the trade-
off between optimal results and suitable effort or “cost” of the different experiments. These cost 
criteria include the estimated processing time and advantages or disadvantages specific to the 
sensors. 

3.3.2.3 Implementation and results of benchmarking 

The following section focuses on the implementation of the benchmarking process, starting with the 
classification input data (section 3.3.2.3.1), followed by explaining the class separability analysis 
(section 3.3.2.3.2), the results of the classification (section 3.3.2.3.3) and the outcome of the 
benchmarking process. 
 

3.3.2.3.1 Classification input data 

The ECoLaSS FOR test sites comprise: North test site in Sweden covering two adjacent Sentinel-2 
tiles (33VVF and 33VWF), South-East test site covering adjacent Sentinel-2 tiles (34TFM and 35TFL) 
and Central test site covering adjacent Sentinel-2 tiles 32UNU and 32TNT. For all test sites Sentinel-2 
and Sentinel-1 data were processed. 
 
In project phase 1 tests have been performed in the North test site in Sweden only. Sentinel-2 
imagery was atmospherically corrected and topographically normalized using the ESA Sen2Cor 
software (Louis et al. 2016). Only scenes with a cloud cover lower than 50% were used for the 
classification and analysis. The cloud cover metrics do not rely on the official metadata cloud score 
provided by the original Sentinel-2 Level 1C product, but were calculated as part of the pre-
processing chain using Sen2Cor to derive Level-2A data. Figure 3-40 shows the Sentinel-2 scene 
cloud cover distribution in the test site. Details on the pre-processing of EO data are described in the 
final issue of WP 32 [AD07]. Figure 3-41 shows the respective data score (inverted cloud score) for 
each pixel in the area of interest, which is the number of available Sentinel-2 observations with 
average cloud cover <50% per pixel, within the full year 2017.  
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Figure 3-40: Cloud coverage of Sentinel-2 tile VVF (left) and VWF (right) of the test site North in Sweden. 

Blue: Scenes with < 50% cloud cover. 

 
The large amount of scenes with strong cloud cover in the time series reinforces the need for the use 
of image composite-like time features (section 3.1.4). For Sentinel-2, the time series over the full 
year was processed, and analyzed comparatively with using Sentinel-2 data of the spring period (15. 
March - 15. June 2017) only. Due to preliminary research on vegetation phenology showing the 
limited potential for leaf type separation with Sentinel-1 data outside the spring period, the dataset 
was limited to the period 15. March - 15. June 2017. The Sentinel-1 GRD data (VV and VH 
polarization) was pre-processed to gamma naught (radar backscatter coefficient for an assumed 
ellipsoidal ground surface) and a multi-temporal filter was applied on the time series [AD07].  
  

 
 

Figure 3-41: Sentinel-2 data score (number of cloud-free images) of scenes with average cloud cover <50% 

for ECoLaSS north test site (VWF/VVF tiles), within the full year 2017. 

 
Time features were calculated for the NDVI, NDWI, Brightness and IRECI indices using Sentinel-2 
data, once for the full year 2017 and once for the spring period (15. March - 15. June 2017) for the 
Northern test site. For Sentinel-1, time features were calculated for the same spring period, for 
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gamma nought of the VV and VH polarizations and the normalized difference, as well as the ratio of 
VV and VH. Additionally, the change trend features between March and June and between April and 
June (the expected minimum and maximum canopy cover of broadleaf forest in the spring 
timeframe) were calculated for an analysis of the leaf type discrimination. 
 
Two independent sample datasets were used for classification and validation. The training samples 
for coniferous and broadleaf forest were extracted from the combined HRL2015 Dominant Leaf Type 
product and the HRL2015 Grassland product. Certain measures were undertaken to reduce the 
number of outliers and errors in these samples: 
  

1. Reduction of edge effects and mixed pixels through negative buffering (60 m) of the DLT 
product classes (broadleaved, coniferous, and no tree cover). The remaining forest patches 
usually represent patches of relatively homogenous leaf type. 

2. Removal of patches smaller than 1 ha 
3. Stratified random point sampling within the remaining forest areas 
4. Removal of sampling errors through visual checks of samples  
5. Iterative resampling and visual check of samples for the broadleaved class to match the 

number of coniferous samples 
6. Creation of rectangle polygons (corresponding to 3x3 10 m pixels) from the point samples by 

positive buffering by 15 m 
  
The measures applied for the creation of the training data set lead to a certain bias in the data. 

Samples of transitional or more heterogeneous forest cover are not well represented in the data set, 

limiting the validity to assess the classification success. In order to be able to evaluate the 

classification accuracy and consequently compare different sensors, time periods and input time 

features, an independent validation data set was created. This guarantees an evaluation 

independently from the quality of the DLT 2015 product and the sample enhancement process. For 

that, the DLT 2017 classification layer was masked with the 2017 forest / non-forest mask (derived 

as part of work package 34 – Forest-Change, using the same input time features) and for each class, 

a sample of 110 points was randomly selected and visually interpreted. Table 3-28 shows the sample 

and response design for the creation of the validation dataset, Table 3-29 the distribution of sample 

points of the training and validation dataset. 

 

Table 3-28: Validation dataset specifications. 

Sample Design Stratified random point sampling (per class) 

Sample Units Points with a 1-pixel distance to class border (to avoid border 
effects) 

Stratification 
pattern 

50% inside VHR-reference data extent, 50% outside; 
fixed # of samples for each class 

Response Design within VHR data extent: 
Interpretation of each sample using VHR data as primary 
source; Google Earth/Bing Maps as secondary data source 
Outside VHR extent: 
Google Earth/Bing Maps; selected Sentinel-2 data pairs 
(spring/summer(in leaf)) as secondary source 
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Table 3-29: Sample distribution of training and validation dataset. 

Class ID Class name Training data 
# polygons 

Validation data 
# points 

0 no tree cover 500 127 

1 broadleaved 200 62 

2 coniferous 200 141 

 
In phase 2, new time features (see section 3.1.4) derived from the Sentinel-2 spectral bands (B02 to 
B12) have been calculated and analysed towards their importance in the Random Forest 
classification of both, the TCM and the DLT. In total, 234 features (compared to 160 features in 
phase 1) were available to feed the machine learning algorithm: 182 features for the Sentinel-2 
indices and bands, and 52 features from the Sentinel-1 single bands and indices. For the TCD, 
features derived from the spectral bands have been assessed towards their fitness towards a 
seamless production on larger scale.  
 
Besides the extension of the time feature portfolio, an improved sample base for the automated 
reference sampling has been generated, based on all available HRL2015 20m status layers (Dominant 
Leaf Type, Imperviousness, Grassland and Water) as exemplarily shown in Figure 3-42.  

 

Figure 3-42: Example for the Sample Layer 2015 derived from the Copernicus High-Resolution Layers 2015. 

(© EuroGeographics for the administrative boundaries) 
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The thereof derived Sample Layer (SLA) 2015 consists of 6 thematic classes (broadleaved trees, 
coniferous trees, imperviousness, grassland, water, all other land cover) from which training samples 
were automatically extracted (250 per tile) and provides a more sophisticated representation of the 
“no tree cover” class, compared to the phase 1 approach. The sampling is oriented towards the 
proportional coverage of tree cover (broadleaved & coniferous) and no tree cover (all other classes) 
within the test sites. Similar measures as in phase 1 were undertaken to reduce the number of 
outliers and errors: 
 

1. Reduction of edge effects and mixed pixels through negative buffering (20m) of the HRL2015 
SLA  

2. Removal of patches smaller than 1ha 
3. Systematic stratified random polygon (30m x 30m )sampling within the six SLA 2015 classes, 

following the proportional distribution of classes within the test site, considering the general 
Sentinel-2 data availability by incorporation of the Sentinel-2 Data Score Layer 

4. Removal of sampling errors through scatter-plot analysis based on time features  
5. Iterative resampling and outlier detection 

 
This approach pursues a generally wider representation of forest and non-forest samples for 
generation of the tree cover status maps as input for all FOR prototypes. 
 

3.3.2.3.2 Class separability analysis 

The ability of the different time features to separate the forest classes were evaluated by visual 
interpretation of box plots and the calculation of the random forest feature importance. Figure 3-43 
and Figure 3-44 show boxplots of the reference pixel distribution for four important Sentinel-2 
respectively Sentinel-1 time features. 
 
Multiple Sentinel-2 time features allow for relatively good separation of broadleaf and coniferous 
forest, with the complex difmin features (see chapter 3.1.4.1) of several indices dominating the 
feature importance. This significant difference in the strongest positive change within the time series 
agrees with the characteristic seasonal patterns of the broadleaf forest compared to the more stable 
vegetation cover of coniferous forest. The various indices’ difmin features are directly followed by 
the importance of multiple simple features, e.g. percentiles, std and max statistics of the NDVI, 
NDWI and IRECI indices and brightness indices, whereas the multiple simple features for spectral 
bands are less significant. 
 
Compared to Sentinel-2, the box plots of the Sentinel-1 time feature show inferior separability, 
especially for the VV-polarization. The highest importance by far can be attributed to the VH change 
trend and the closely following VH difmin features, confirming the high importance of the strong 
seasonal value difference between coniferous and the more seasonal broadleaf forest. The difmin 
time feature considers the full time series, and the change trend feature selected scenes. Both 
capture similar information (the strongest value delta in the time series), however, the latter based 
on selected scenes shows a slightly higher feature importance. This can be attributed to the 
temporal window size of the difmin feature, as only scenes with a limited time distance are 
compared. Other simple Sentinel-1 time features show vastly lower feature importance for the 
forest class separation. 
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Figure 3-43: Forest class separability box plots for selected Sentinel-2 time features. 

 

Figure 3-44: Forest class separability box plots for selected Sentinel-1 time features. 

In project phase 2, further analyses have been performed towards the forest class separability using 
NDVI profiles from consecutive years (2017, 2018) and additional band-specific time features 
derived from Sentinel-2 data. NDVI profiles have been collected in all test sites for selected 
coniferous and broadleaf trees stands and are presented in the figures below.  
 
In the northern site, the NDVI values of broadleaf and coniferous forest can be clearly separated in 
the spring period (March to June) as well as in the winter months (see Figure 3-45). For the summer 
period, NDVI values are slightly different in a short time window ranging from July to September. 
This might be challenging when the leaf type classification relies on NDVI features as input only. 

 

Figure 3-45: NDVI profiles 2017/2018 for broadleaf and coniferous tree stands in the North test site. 
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Figure 3-46: Sentinel-2 SWIR Band (B12) reflectance characteristics for broadleaf and coniferous tree stands.  

 

Unlike the NDVI values for the northern test site, there is a clear difference in the spectral response 
of broadleaf and coniferous trees in the SWIR band (B12) of Sentinel-2 (see Figure 3-46), making it 
well suited for a leaf type discrimination within the selected spring/summer period. This is also 
underpinned by the feature importance of the SWIR band in the random forest classification across 
all test sites (see section 3.3.2.3.3). 
 
In the Central test site, one can notice strong differences towards summer months (Figure 3-47). 
This behaviour in the NDVI profile was key for the selection of the final time period for the time 
feature calculation.  

 

Figure 3-47: NDVI profiles 2017/2018 for broadleaf and coniferous tree stands in the Central test site. 
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A similar pattern in the NDVI values for the two forest classes is also evident in the South-East site, 
with higher values for broadleaf beginning in the spring (see Figure 3-48). This highlights a different 
phenology compared to the test sites in Sweden (North) and Austria/Germany (Central). 
 
From the figures above and TCM & DLT tests results, the class separability analysis shows the highest 
importance correspond to the time features with strongest delta value in the time series (e.g. 
broadleaf seasonal patterns versus more stable coniferous). NIR (B08) and SWIR (B11, B12) band 
derived features from Sentinel-2 are of high importance for the leaf type discrimination and 
consequently highly recommended for the thematic classification.  
 

 

Figure 3-48: NDVI profiles 2017/2018 for broadleaf and coniferous tree stands in the South-East test site. 

In conclusion, the analyses performed confirm the importance of the spring period for the Dominant 
Leaf Type classification and a strong added value towards the integration of features derived from 
the NIR and SWIR bands of Sentinel-2. 
 

3.3.2.3.3 Classification results 

In phase 1, the classification was carried out using a random forest classifier with preceding 
recursive feature elimination. The general accuracy metrics of the different input data configurations 
can be seen in Table 3-30 and Figure 3-49, while Table 3-31 shows the class specific results.  

 

Figure 3-49: Kappa and overall accuracy for the five DLT input data configurations. 
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Table 3-30: Accuracy metrics for the five DLT input data configurations. 

 

User’s 
Acc. 

Producer’s 
Acc. 

Overall 
Acc. 

Kappa 

S1 spring 0.75 0.74 0.74 0.41 

S2 full + 
S1 spring 

0.93 0.93 0.93 0.84 

S2 full 0.94 0.94 0.94 0.85 

S2 spring 0.97 0.97 0.97 0.92 

S2 spring + 
S1 spring 

0.97 0.97 0.97 0.93 

  

Table 3-31: User and producer accuracy for the five DLT input data configurations. 

 

Users 
Acc.  

Producers 
Acc.  

 
Broadl. 
Forest 

Con. 
Forest 

Broadl. 
Forest 

Con. 
Forest 

S1 spring 0.57 0.83 0.63 0.79 

S2 full +  
S1 spring 

0.88 0.96 0.90 0.94 

S2 full 0.88 0.96 0.92 0.94 

S2 spring 0.91 0.99 0.98 0.96 

S2 spring + 
S1 spring 

0.92 0.99 0.98 0.96 

 
The classification using Sentinel-2 time features, both for the full year and spring period, are able to 
successfully differentiate between broadleaf and coniferous forest with an overall accuracy of 97% in 
the Northern test site. This is also considering the partially challenging forest geography in the area 
of interest with a multitude of forest stand ages and densities due to frequent tree harvesting. 
Interestingly, the shorter spring data period offers slightly better results than using the full year 
2017. The differentiation of broadleaf and coniferous forest vastly depends on the seasonal pattern 
of broadleaf forest, and the spring period captures this period of biggest variance.  
 
As expected from the separability analysis, the Sentinel-1 classification is far less successful with 74% 
overall accuracy and a very low Kappa of 0.41 representing a strong mismatch between the class 
specific accuracies. This is due to frequent misclassifications of broadleaf forest being incorrectly 
detected as coniferous forest, resulting in lower producer’s and user’s accuracies. As mentioned 
above, Sentinel-2 only (spring period) provides the best results with an overall accuracy of 97%. The 
combination of Sentinel-2 and Sentinel-1 features does not add any significant gain in accuracy. 
Figure 3-50 shows a detailed view of the Sentinel-2 and Sentinel-1 spring period classification map. 
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Figure 3-50: Classification result detail view of 33VVT tile for Sentinel-2 spring (mid), Sentinel-1 spring (right) 

compared to Sentinel-2 NIR-R-G false colour composite (left). Modified Copernicus Sentinel data [2017]. 

 
In project phase 2, classification tests have been extended to all FOR test sites. Based on the 
experiences and lessons learned from Task 4 within the first project phase, several analyses and 
measures have been undertaken to improve the results. This concerns the generation of the Tree 
Cover Mask (TCM) as basic product for all FOR prototypes, as well as the Dominant Leaf Type (DLT) 
product and the continuous-scale Tree Cover Density (TCD) product. 

TREE COVER & DOMINANT LEAF TYPE MAPPING 

After some sobering results of the phase 1 tree cover classification in the demonstration site North 
due to an insufficient data situation within the selected spring period for most of the tiles, the 
utilization of Sentinel-1 SAR data has been reconsidered in phase 2 to improve the tree cover 
detection. An improved Tree Cover Mask at 10 m spatial resolution is calculated from time features 
derived from Sentinel-2 and Sentinel-1 SAR data of the spring/summer period. Compared to the 
results of project phase 1, the integration of SAR data in the TCM classification has reduced the 
number of omission errors over cloudy areas significantly. Simultaneously, commission errors could 
be drastically reduced. This is especially the case for agricultural areas (hops, vineyards, maize 
fields), moors and wetlands. This observation could be made in all test sites and thus supporting the 
integration of SAR data in the classification process. In this context, SAR data contributes to a 
reliable tree cover detection, which is mandatory for generation of the Dominant Leaf Type and Tree 
Cover Density products (by masking) as well as a reliable map-to-map change approach in form of 
the Incremental Update Layer 2017-2018.  
 
SAR time features derived from the VH polarisation (e.g. VH_p025, VH_p010) turned out to have a 
high importance in the tree cover detection followed by features derived from the Sentinel-2 bands 
B02 and B03 as well as NDVI and NDWI features. With respect to the DLT classification, SAR features 
show no benefit for the leaf type discrimination. Here, band-specific features from Sentinel-2 
dominate clearly over all other derived features. Worth mentioning is the dominance of features 
derived from the SWIR bands (B11, B12). Figure 3-51 presents the top 20 ranking of the time feature 
importance for the TCM and DLT classifications of the Central test site for the reference year 2018. 
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Figure 3-51: Top 20 time feature ranking for combined S1/S2 TCM 2018 (left) and DLT 2018 classification 

(right). 

 
In contrast, and with respect to the DLT classification, the influence of SAR time features within a 
combined Sentinel-2 and Sentinel-1 SAR approach plays a minor role only. Sentinel-1 time features 
do not appear in the top 20 ranking, which underpins the importance of optical data for the 
classification of the dominant leaf types. In general, the integration of SAR data in the classification 
process show high processing costs in terms of processing time and additional storage costs. 
Consequently, a well-balanced usage of SAR data for status layer generation is recommended for an 
operational service on continental or global scale. This can be addressed by an elaborated 
stratification approach of the production area.  
 
In parallel to the new feature calculation and analysis, two different feature selection methods have 
been tested. The first one is based on the statistical analysis of variance of the features and the 
target class to be classified. The process comprises the comparison of the mean values in every 
feature for the land cover class “tree cover” vs other land cover classes (urban, water, grassland, and 
cropland), using an Analysis of Variance and a post-hoc analysis (Tukey test). The features selected 
under this feature selection scheme are those with a significant statistical difference between forest 
and other land cover classes. In the case of the Dominant Leaf Type the statistical analysis was made 
on the mean values of two classes (broadleaved and coniferous), using a Student’s t-test. 
 
The second feature selection method is the K-Fold Cross Validation. This is based on a stratified k 
fold sampling integrated in the machine learning package. This sampling method splits the training 
and test dataset into a number of k-folds. Subsequently, it clones the classifier by every iteration and 
produces accuracy figures and a new training and test set. The algorithm finally yields a combination 
of the features with the highest accuracy. This subset of features is used for the classification 
process. 
In terms of processing costs (processing time), the variance analysis seems to be superior to the K-
Fold feature selection, as it provides similar model accuracy figures by using significantly less 
features. A significant influence of the feature selection method on the overall accuracy figures 
(retrieved by LUCAS 2018 points) could not be observed. Figure 3-52 shows an example of the 
number of time features versus accuracy performance for the TCM 2018 test classification in the 
Central site (time feature selection method K-fold cross-validation): 
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Figure 3-52: Number of time features versus TCM 2018 accuracy performance for test site Central. 

 
The following figures show respectively the final settings (blue square) for generation of the Tree 
Cover Masks and Dominant Leaf Type products, considering the performance cost and accuracy for 
selected time windows, based on tests carried out for the number of input time features, features 
election method and sensors.  
 
Given that the overall data situation is good or even very good, the spring period is sufficient to 
retrieve a high quality Tree Cover Mask using optical Sentinel-2 data only (Figure 3-53). The feature 
selection method has a high impact on the number of features to be classified and consequently a 
significant influence on the processing costs while retaining high accuracy. From an economic point 
of view, a features selection method is highly recommended for large scale applications. The highest 
accuracy could be achieved using a combined Sentinel-1/Sentinel-2 classification approach with 
extended observation period (spring/summer) and application of a feature selection method. 
 

 

Figure 3-53: Parameter set evaluation for Tree Cover Mapping in the Central test site. 
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Figure 3-54: Parameter set evaluation for Dominant Leaf Type Mapping in the Central test site. 

The highlighted settings proved to provide overall high accuracies and could be successfully 
transferred to all test sites. However, the strongest influence on classification accuracies can be 
observed by the quality of the samples. In ECoLaSS, a multi-stage sampling approach has been 
applied: automatic reference sampling based on a sample layer generated from HRL2015 products, 
outlier detection with visual validation of the samples and split of the sample dataset into training 
and validation dataset, initial classification and re-sampling based on omission and commission 
errors with subsequent iteration loops. A subsequently performed validation with LUCAS 2018 
points confirmed very high overall accuracies for all TCM and DLT classifications. The following tables 
provide the error matrices for all TCM and DLT test products within the three test sites. 
 

Table 3-32: Error matrix for the improved TCM 2018 of the test site Sweden 

TCM_2018_010m Sweden 

REFERENCE   

No Tree Cover Tree Cover Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 514 36 550 93.45% 91.30 – 95.61% 

Tree Cover 12 361 373 94.68% 95.77 – 98.71% 

  

Total 526 397 923 
  

Producer Accuracy 97.72% 90.93% 
 

94.80% 
Overall 

Accuracy 

Confidence Interval 96.35 – 99.09% 87.98 – 93.88% 
 

93.31 – 
96.21% 

Confidence 
Interval 

 

0.955 
F-Score No 
Tree Cover 

0.937 
F-Score  

Tree Cover 

0.893 Kappa 
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Table 3-33: Error matrix for the improved TCM 2018 of the test site Austria/Germany 

TCM_2018_010m Austria/Germany 

REFERENCE   

No Tree Cover Tree Cover Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 664 8 672 98.81% 97.92 – 99.70% 

Tree Cover 10 150 160 93.75% 89.69 – 97.81% 

  

Total 674 158 832 
  

Producer Accuracy 98.65% 94.94% 
 

97.84% 
Overall 

Accuracy 

Confidence Interval 97.53 – 99.50% 91.20 – 98.67% 
 

96.79 – 
98.89% 

Confidence 
Interval 

 

0.986 
F-Score No 
Tree Cover 

0.943 
F-Score  

Tree Cover 

0.930 Kappa 

Table 3-34: Error matrix for the improved TCM 2018 of the test site Bulgaria/Greece 

TCM_2018_010m Bulgaria/Greece 

REFERENCE   

No Tree Cover Tree Cover Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 557 24 581 95.87% 94.16 – 97.57% 

Tree Cover 14 70 84 83.33% 74.77 – 91.0% 

  

Total 571 94 665 
  

Producer Accuracy 97.55% 74.47% 
 

94.29% 
Overall 

Accuracy 

Confidence Interval 96.19 – 98.90% 65.12 – 83.81% 
 

92.45 – 
96.13% 

Confidence 
Interval 

 

0.967 
F-Score No 
Tree Cover 

0.786 
F-Score  

Tree Cover 

0.753 Kappa 

Table 3-35: Error matrix for the improved DLT 2018 status layer of the test site Sweden 

DLT_2018_010m Sweden 
REFERENCE   

No Tree 
Cover 

Broadleaved Coniferous Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 514 27 9 550 93.45% 91.30 – 95.61% 

Broadleaved 6 125 17 148 84.46% 79.50 – 89.42% 

  

Coniferous 6 16 203 225 90.22% 86.12 – 94.33% 

Total 526 168 229 923   

Producer Accuracy 97.72% 74.40% 88.65% 
 

91.22% 
Overall 

Accuracy 

Confidence Interval 
96.35 – 
99.09% 

67.51 – 
80.28% 

84.32 – 
92.97%  

89.34 – 
93.10% 

Confidence 
Interval 

 

0.955 
F-Score No 
Tree Cover 

0.791 
F-Score 

Broadleaved 

0.894 
F-Score 

Coniferous 

0.846 Kappa 
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Table 3-36: Error matrix for the improved DLT 2018 status layer of the test site Austria/Germany 

DLT_2018_10m Austria/Germany 

REFERENCE   

No Tree 
Cover 

Broadleaved Coniferous Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 664 6 2 672 98.81% 97.92 – 99.70% 

Broadleaved 6 88 7 101 87.13% 77.74 – 96.52% 

  

Coniferous 4 5 50 319 84.75% 74.72 – 94.77% 

Total 674 99 62 832   

Producer Accuracy 98.52% 88.89% 80.65% 
 

96.03% 
Overall 

Accuracy 

Confidence Interval 
97.53 – 
99.50% 

82.19 – 
97.76% 

70.00 – 
91.29%  

95.07 – 
97.72% 

Confidence 
Interval 

 

0.986 
F-Score No 
Tree Cover 

0.880 
F-Score 

Broadleaved 

0.847 
F-Score 

Coniferous 

0.889 Kappa 

 

Table 3-37: Error matrix for the improved DLT 2018 status layer of the test site Bulgaria/Greece  

DLT_2018_10m Bulgaria/Greece 
REFERENCE   

No Tree 
Cover 

Broadleaved Coniferous Total 
User 

Accuracy 
Confidence 

Interval 

PRODUCT 
No Tree Cover 557 21 3 581 95.87% 94.16 – 97.57% 

Broadleaved 12 32 3 47 68.09% 51.71 – 84.46% 

  

Coniferous 2 7 28 37 75.68% 60.50 – 90.85% 

Total 571 60 34 665   

Producer Accuracy 97.55% 53.33% 82.35% 
 

92.78% 
Overall 

Accuracy 

Confidence Interval 
96.19 – 
98.90% 

39.88 – 
71.57% 

68.07 – 
96.64%  

90.74 – 
94.82% 

Confidence 
Interval 

 

0.967 
F-Score No 
Tree Cover 

0.598 
F-Score 

Broadleaved 

0.788 
F-Score 

Coniferous 

0.699 Kappa 

 
Although the target threshold of 90 % overall accuracy could be exceeded within each test site for all 
products, results for the test site Bulgaria/Greece should be treated with caution. Here, no full 
LUCAS 2018 coverage was available, and data situation was the worst compared to the other sites. 
Besides already mentioned artefacts coming from the inadequate cloud-masking, dry related-effects 
hindered a proper tree cover detection. The thereof resulting omission errors are negatively 
influencing the producer accuracies of both, TCM and DLT products. However, looking at the results 
on demonstration site level (see “D42.1b - Prototype Report: Consistent HR Layer Time 
Series/Incremental Updates”, Issue 2), results are quite better thanks to a more balanced 
distribution of LUCAS 2018 points. 
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TREE COVER DENSITY 

In addition to the aspects listed above, project phase 2 has also concentrated on the generation of 
an improved continuous-scale Tree Cover Density (TCD) product at 10 m spatial resolution using 
optical Sentinel-2 data. The pixel-based TCD product provides information on the proportional 
crown coverage per pixel in percent (0-100%), whereas tree cover density is defined as the „vertical 
projection of tree crowns to a horizontal earth’s surface“. It is well suited to map spatial patterns, 
but is phenological and radiometrically sensitive. 
 
Two different approaches have been used to generate the status layer Tree Cover Density 2018 
using a linear regression estimator: a mono-temporal classification using a “best-of” scene approach 
and a multi-temporal classification using band-specific time features for defined time windows. 
Samples (300 per tile) have been automatically collected from the TCD 2015 product. Outliers have 
been removed in frame of the scatter plot analysis based on a threshold approach. Finally, 268 
samples entered in the classification of each input data stack. Table 3-38 provides the parameters 
for the TCD time feature testing.  
 

Table 3-38: Parameter testing for time series TCD classification. 

Parameter sets for TCD Time Feature Testing 

Bands Feature Time Period Cloud Cover No. of Samples 

B02, B03, B04, 
B05, B06, B07, 
B08, B08A, 
B11, B12 

 Mean 

 Median 

 p010 

 p025 

01.06.-30.06. 

60% 300 

B02, B03, B04, 
B08, B11, B12 

01.07.-31.07. 

01.08.-31.08. 

01.06.-31.08. 

 
Band-specific spatio-temporal features (each 10 m & 20 m band) have been tested for a multi-
temporal TCD classification. Whereas most of the features show no suitability for the classification, 
results of the median features provide very promising results. Figure 3-55 shows certain time 
periods for band-specific median time feature stacks from within the summer months. From 
experience, these windows show the highest potential for good weather conditions with low cloud 
cover rates. Whereas single month show divergent cloud conditions with remaining clouds and 
nodata gaps (highlighted in blue), the time period 01.06.to 31.08. can be rated the best in terms of 
completeness and overall data quality. Remaining nodata areas are related to snow and ice cover, 
which is not relevant for the HRL Forest. Compared to the monthly feature stacks and stacks derived 
from the “mean”, “p010” and “p025” time features, the median time feature stack shows only few 
artefacts in the landscape and has been finally selected for the Tree Cover Density classification 
within ECoLaSS. 
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Figure 3-55: Sentinel-2 median time feature stacks for Tree Cover Density classification. Blue areas represent 

remaining clouds, nodata gaps and/or snow and ice cover. Modified Copernicus Sentinel data [2018]. 

 
Classification results have been compared with results derived from the Copernicus Sentinel-2 
Global Mosaic (S2GM - https://land.copernicus.eu/imagery-in-situ/global-image-mosaics/) and a 
cloud-free, mono-temporal “best-of” scene acquired in June 2018. For this purpose, the same 
sample dataset as for the TCD time feature testing exercise has been used. Figure 3-56 shows the 
results of the TCD time feature testing and benchmarking exercise.  
 
 
 
 
 

https://land.copernicus.eu/imagery-in-situ/global-image-mosaics/
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Input 
Data 

Imagery TCD 2018 Accuracy 
Figures 

Mean 
time 
features 

  

 
R² = 
0.9341 
 
MAE = 
7.43 
 
RMS = 
9.43 

    

p010 
time 
features 

  

 
R² = 
0.89825 
 
MAE = 
9.30 
 
RMS = 
12.42 

    

p025 
time 
features 

  

 
R² = 
0.91652 
 
MAE = 
8.49 
 
RMS = 
11.29 

    

Median 
time 
features 

  

 
R² = 
0.93109 
 
MAE = 
7.66 
 
RMS = 
9.67 
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S2GM 

  

 
R² = 
0.90652 
 
MAE = 
9.48 
 
RMS = 
12.30 

    

Best-of 
Scene 

  

 
R² = 
0.94698 
 
MAE = 
6.78 
 
RMS = 
8.65 

Figure 3-56: Comparison of Tree Cover Density classification results based on different input data. 

Modified Copernicus Sentinel data [2018]. 

 
The following observations have been made in the evaluation process of the feature-based TCD: 
 

 Length of the selected time window for feature computation is crucial to avoid cloud gaps 

 Inadequate cloud masks lead to artefacts in the TCD classification 

 Overcorrections in the topographic normalization (performed by Sen2Cor) lead to 
significantly lower TCD values than may be realistically the case 

 High agreement with results obtained from the mono-temporal Sentinel-2 scene 

 Much less artefacts compared to the classification derived from the S2GM 
 
As expected, the single scene classification based on a cloud-free “best-of” scene provides the best 
results with a high level of detail and an R² = 0.95, followed the results obtained by mean features 
(R² = 0.93) and Median time features (R² = 0.93). The percentile time features and the S2GM provide 
significantly lower R² values and show lots of artefacts, which are negatively influencing the “look & 
feel” of the product. This is especially truth for the S2GM data. Main issues are referred to the 
topographic normalization of the input data and the quality of the derived cloud masks (see Figure 
3-57) as reported in WP 32 [AD07]. Some further research and improvements are necessary to 
compensate these effects in the time series TCD classification. 
 
As for the TCD, band-specific time features (mean and median) of Sentinel-2 are suitable to derive 
the continuous-scale TCD at 10 m resolution. Even though median features provide slightly poorer 
results in the regression model, they provide a much better “look & feel” thanks to overall less 
artefacts. For this reason, median features have been finally selected for the TCD classifications in all 
test sites. 
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Figure 3-57: Sentinel-2 median time feature stack (01.06.-31.08.2018) and unmasked Tree Cover Density. 

Arrows point to issues caused by the terrain correction and cloud masking. Modified Copernicus Sentinel data 

[2018]. 

The ECoLaSS prototype in 10m resolution shows much more details than the TCD 2015 based on 
20m satellite imagery (see Figure 3-58). Notwithstanding, a direct comparison of the two products is 
not recommended. This is mainly due to scaling issues (20 m vs 10 m native resolutions) and 
radiometric inconsistencies (productions based on varying input spectral bands e.g., Landsat 8, 
Sentinel-2A, IRS LISS-III, SPOT-5 in 2015 vs Sentinel-2A+B in 2018). Furthermore, a phenology 
mismatch due to varying acquisition dates in the 2015 production (2014-2016 acquisitions with 
different sun angles) has been reported and varying acquisition angles coming from different 
satellites/sensors led to shadow-related overestimations of tree cover at the fringe of forest 
borders.  
 

 

Figure 3-58: Comparison of the TCD 2015 (20 m) and the improved TCD 2018 at 10 m spatial resolution. 

Produced using modified Copernicus Sentinel data [2016/2018]. 
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In the tests carried out in phase 2, and compared to the TCD production in 2015, there has been no 
time-consuming scene selection process from scenes acquired within the vegetation period. In 
general, seamline creation between tiles/scenes are being dropped and there is no need for a cloud 
gap-filling, which can be often exhaustive. Instead, a high performance is achieved through an 
automated sampling approach (outlier detection through scatter plot analysis) and a rapid 
calculation thanks to a multiple linear regression estimator. These points argue for a cost-efficient 
utilization of median time features for large-scale productions. 
 
However, as with the other prototypes, it must be taken into account that inadequate cloud masks 
lead to artefacts and nodata gaps, and that the topographic normalization in Sen2Cor as reported in 
WP 32 is tending to overcorrections, which are causing artefacts in the TCD classification. In 
addition, resampling in Sen2Cor (20 m bands to 10 m) may partially lead to unwanted geometry 
effects (visible 20 m pixel borders). These issues are traced over the improved Tree Cover Density 
product, as it is very sensitive towards radiometrically distortions. Nevertheless, the TCD product 
convinces through its high level of detail and will definitively benefit from future improvements in 
the Sentinel-2 cloud masking algorithm and terrain correction.  
 

3.3.2.3.4 Benchmarking 

 
Table 3-39 gives a summary of how leaf type classification results (accuracy) relate to processing 
costs. Furthermore, scenario-specific chances and issues are listed. This type of benchmarking has 
been firstly made in phase 1 within Task 3 (compare Issue 1 of the document at hand) but had to be 
revised after the experiences and lessons learned from the first prototypic implementation in Task 4. 
Due to high cloud cover rates in several Sentinel-2 tiles, the recommended input data parameters 
from WP33 (Sentinel-2 only; spring period) did not deliver the desired results. This was the main 
reason for an extension of the observation period and the general integration of SAR data in project 
phase 2. 
 
Furthermore, processing costs have been generally underestimated. Therefore, the benchmark 
criteria have been extended to the item storage cost. Regarding the overall processing costs, the 
following principles are valid: 

a) The longer the observation period the more data is needed and the higher the processing 
costs. 

b) The more time features are calculated, the higher the storage costs. 

Consequently, the overall processing costs are dependent on the length of the time series 
(observation period) and the overall number of time features to be calculated. The latter 
significantly increases the storage costs, being part of the overall processing costs. 
 
The input-data scenarios with the highest achieved accuracies are "S2 spring", "S2/S1 spring" and 
"S2/S1 spring/summer”. All scenarios reach very high Kappa values greater than 0.9. While 
accuracies are comparable, the overall processing cost (processing + storage costs) for "S2 spring" is 
significantly lower than for all other scenarios, except the "S1 spring" scenario, which is not 
recommended for a leaf type classification. It therefore can be concluded that "S2 spring" offers a 
very good balance between cost and benefit. The pre-processing of Sentinel-2 data via the 
automated processing chain took about 2 days per Sentinel-2 tile (including atmospheric correction, 
topographic normalization, resampling, indices calculation and time feature calculation) and about 4 
days for Sentinel-1 (calibration, terrain flattening and correction, multi-temporal filtering, ratio 
calculation and time feature calculation). These empirical values may vary in dependence of the 
given infrastructure, but have a high influence on the budget planning in operational production 
projects as long as relevant input data is not provided in the desired format from the very beginning.  
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However, issues caused by clouds and cloud shadows in the input imagery are mitigated by the use 
of time features to a certain degree. This is always dependent on cloud cover situations specific to a 
region and the particular year, and finally also from the quality of the provided/derived cloud masks. 
Therefore, the addition of Sentinel-1 data to the data scenario might be required when the cloud 
cover/data availability situation is difficult or if the focus is set on a reliable tree cover detection. 
 
Consequently, the addition of Sentinel-1 data to the data scenario is recommended when cloud 
cover is an issue in the area of interest. This solution also provides an additional benefit: The 
combination of Sentinel-1 and Sentinel-2 input data further increases the accuracy of the results. On 
the other hand, increasing costs are a direct consequence. 
 

Table 3-39: Benchmarking criteria, chances, and issues of the different input data scenarios  

Satellite / Period Accuracy 

(Kappa) 

Processing 

cost 

Storage 

cost 

Chances Issues 

S1 spring 0.41 + + Independent from cloud 

cover 

SAR inherent properties 

(foreshortening, layover in strong 

relief, speckle)  

S2 full  

+  

S1 spring 

0.84 +++++ +++++ Partially dependent on 

cloud cover, but SAR and 

Sentinel-2 time features 

mitigate problematic areas  

Clouds/cloud shadows, artefacts, 

nodata gaps, SAR inherent 

properties (foreshortening, layover 

in strong relief, speckle) 

S2 full  0.85 ++++ ++++ Partially dependent on 

cloud cover, but time 

features mitigate 

problematic areas 

Clouds/cloud shadows, artefacts, 

nodata gaps 

S2 spring 0.92 + ++ Dependent on cloud cover, 

but time features mitigate 

problematic areas 

Clouds/cloud shadows, artefacts, 

nodata gaps 

S2 spring  

+  

S1 spring 

0.93 ++ +++ Partially dependent on 

cloud cover, but SAR and 

Sentinel-2 time features 

mitigate problematic areas 

Clouds/cloud shadows, artefacts, 

nodata gaps, SAR inherent 

properties (foreshortening, layover 

in strong relief, speckle) 

S2 spring/summer 

+  

S1 spring/summer 

0.90  

– 

0.97 

+++ ++++ Partially dependent on 

cloud cover, but SAR and 

Sentinel-2 time features 

mitigate problematic areas 

Clouds/cloud shadows, artefacts, 

nodata gaps, SAR inherent 

properties (foreshortening, layover 

in strong relief, speckle) 

 

3.3.2.4 Summary and conclusions 

 
This work investigates the potential of combining Sentinel-2 and Sentinel-1 time series data for 
generation of specific forest products in selected ECoLaSS test sites. Considering the limited 
availability of cloud-free optical satellite scenes and heterogeneous character of the analysed forest 
types in the areas of interest, the results are very promising for future applications on larger areas.  
 
On basis of the tests performed in ECoLaSS, it is possible to conclude about that time features 
describe distinct spectral, temporal and phenological properties, mapping phenological transition 
points and phases while mitigating cloud cover issues and thus being well suited for status layer 
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classifications, monitoring and change analysis. However, time features are computationally 
intensive and storage intensive, relevant drawbacks to be considered when up-scaling to continental 
and global scales.  
 
Time features represent the basic input data for the thematic forest classifications in ECoLaSS. Their 
quality heavily depends on the length of the observation period (time window selection), the time 
series density (scene count) and the quality of the provided (derived) cloud masks. Specific pre-
processing steps such as a topographic normalization can have a negative influence on the input 
data, as frequently observed in image data produced by Sen2Cor (e.g. within test site Central). The 
applied terrain correction tends to overcorrect slopes exposed to the North and North-West, 
resulting in very bright surfaces, artefacts or even nodata gaps. This turned out to be problematic for 
the improved Tree Cover Density product, being radiometrically sensitive. However, this topic has 
been partially addressed by ESA in April 2019 by implementing an improved terrain correction 
algorithm in the Processing Baseline 02.12 for generation of Sentinel-2 Level-2A products. Further 
improvements can be expected with integration of a better DEM in the terrain correction. However, 
the above mentioned improvement could not be assessed by the ECoLaSS team. 
 
Next to the spring period (15th March to 15th June), which has been rated as the observation period 
providing the best ratio of classification accuracy and lowest processing cost in project phase 1, an 
extension of the time window ranging from 15th March to 15th September has been successfully 
tested and finally applied in all FOR sites within phase 2. Increasing the time window is drastically 
increasing the data volume and processing time (and logically also the production costs) but has a 
positive effect on the achieved overall accuracy figures (retrieved by LUCAS 2018), which is in the 
magnitude of 2 to 4 percentage points. Cloud cover issues are generally better mitigated by 
considering a longer observation period. This is mainly due to the increased data availability and a 
potentially higher rate of data acquisitions without or with less cloud cover, additionally reducing 
the number and pattern of artefacts in the derived input features. From this perspective, and due to 
the ever-growing requirements and expectations on user side, an extended time window is 
recommended for operational use.  
 
As already reported in WP 32, inadequate cloud masks represent the source for artefacts in the 
derived time features, which may have a negative impact in the thematic classification in case of 
frequent congruent artefacts, resulting in a disturbed pattern of the feature to be classified. This 
effect could be observed in all three sites, independently from the selected processor (Sen2Cor or 
MACCS). However, when looking into the achieved results, one can state that Sen2Cor Level-2A 
products lead to significantly less artefacts than products generated by the MACCS processor. The 
latter one is strongly overestimating the cloud/shadow cover, resulting in artefacts in a typical block 
structure, negatively influencing the “look and feel” of the products. From this point of view, the 
MACCS processor is less favorable than Sen2Cor. Overall, the improvement of cloud masks coming 
from various processors (e.g. Sen2Cor) is an asset for Copernicus Sentinel-2 applications, or even for 
combined Sentinel-1/-2 products and services. 
 
In view of the achieved thematic accuracies (mainly obtained through LUCAS 2018), it has to be 
stated that the highest accuracy for the Tree Cover Mask is achieved by the combined use of 
Sentinel-1 and Sentinel-2 time features, however at highest cost. SAR features proved to be very 
valuable in (frequently) cloudy regions and in agricultural areas, but show some weaknesses in 
rugged terrain. Steep terrains lead often to commission errors of tree cover with characteristic 
patterns in the Tree Cover Mask.  
 
Although the nominally highest DLT accuracy was provided by the combined use of Sentinel-2 and 
Sentinel-1 time features, the gain compared to only focusing on Sentinel-2 data was insignificant. In 
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such cases, it would not justify the enormous overhead for the pre-processing, time features 
calculation and data handling of additional Sentinel-1 data. However, Sentinel-1 data on its own 
shows only moderate predictive performance for both, TCM and DLT, and would be a viable input 
data complement if the area is even stronger affected by cloud cover in optical satellite imagery. 
Sentinel-2 time features clearly dominate the feature ranking in the DLT classifications across all test 
sites, whereby NIR and SWIR band features showed the highest importance for the leaf type 
discrimination.  
 
In project phase 2 an improved Tree Cover Density product at 10 m spatial resolution has been 
generated. The TCD fully relies on optical spectral bands and is phenological and radiometrically 
sensitive. Any distortions in the input data (e.g. artefacts within time features) are traced over the 
derived product. The TCD results obtained from Sentinel-2 median time features are very promising. 
Median features offer the advantage to be more robust towards radiometric disturbances (e.g. 
artefacts, haze cover) and allow a spatially more consistent production compared to a scene-based 
classification approach as performed in the HRL2015 production. Thanks to the increased resolution, 
results provide much more detail and pattern in the forest structure as the HRL2015 predecessor. 
The selected time window from within the vegetation period (summer period) has been rated as 
suitable to cover the periods of full foliage and could be successfully transferred to all sites, covering 
different geographic areas and conditions. Nevertheless, an extension of the selected time window 
might be appropriate in case of frequent cloud cover or phenological issues. 
 
A high quality of reference samples for training and validation is key for generation of high-quality 
Forest products. Indeed, samples proved to have the highest influence on the classification accuracy. 
The presented automated reference sampling methods (including outlier detections) based on 
existing HRL2015 products (e.g. Forest Sample Layer 2015, Tree Cover Density 2015) provide 
efficient results and contribute to a more automated workflow with shorter production times for 
TCM, DLT and TCD products. Iterations of the sampling process (after outlier detection) have the 
potential to further improve the sampling basis. 
 
Finally, the examined and most promising methodologies could be successfully transferred to all FOR 
demonstration sites, especially in areas strongly affected by cloud cover, e.g. Sweden. The achieved 
results are largely produced by automatic routines and consistently of high quality. No manual 
enhancement steps have been performed, but can be easily applied on regional or local scale in 
order to further improve the results. Compared to previous HRL Forest production approaches 
(2012: single scene classification; 2015: multi-temporal classification), time features offer a more 
streamlined workflow as lots of manual processing steps are being dropped. They allow a consistent 
production over large areas and are superior to previous production approaches. 
 
The ongoing HRL2018 Forest production could already benefit from some findings and conclusions 
made in ECoLaSS. This is especially the case for the continuous-scale Tree Cover Density product by 
utilizing median time features and the integration of Sentinel-1 SAR time features for the tree cover 
mapping. 
  

3.3.3 Grassland 

Methods for large area mapping of grasslands at an operational level often do not provide a 
sufficiently high accuracy level because of the strong variation of grassland surface (natural, semi-
natural, agricultural), its diversity in grassland management practices as well as a spectral overlap 
with croplands. With the availability of Sentinel-1 and Sentinel-2, providing data in short revisit 
intervals and large coverage, grassland mapping will profit from the availability of the dense time 
series. The ECoLaSS consortium is addressing this topic and is developing a supervised classification 
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approach based on dense time series data from Sentinel-1 and Sentinel-2, performed separately for 
main biogeographic regions in Europe and using in-situ data such as LUCAS (Land Use/Cover Area 
frame Statistical Survey) and visually interpreted reference plots. 
 
This section deals with automated grassland mapping based on integrated Sentinel-1 SAR and 
Sentinel-2 multispectral optical time series data implemented in ECoLaSS test sites and prototypes. 
In this context, grasslands considered are covered by Herbaceous vegetation with at least 30% 
ground cover, which includes at least 30% graminoid species such as Poaceae, Cyperaceae and 
Juncaceae (see Table 2-2: Definition of Grassland according to the HRL Grassland 2015). One of the 
major challenges of past pan-European high resolution optical satellite image coverages has been 
data gaps due to high-frequency cloud cover and/ low solar incidence angles. The availability of 
Sentinel-2 satellite(s) significantly improves the data situation. Nevertheless, due to heavy cloud 
cover over specific regions alternative image data sources such as SAR are included. Therefore, in 
this chapter, the usage of Sentinel-1 as alternative image data and how to combine and integrate 
SAR (Sentinel-1) and optical (Sentinel-2) are addressed. Methods developed have tested how to use 
Sentinel-1 SAR data to close data gaps from optical image sources and as complementary 
information (to Sentinel-2) for increasing the thematic classification accuracy. In task 4 of the 
project, the methods are applied on a larger scale over the demo sites. The results are compared to 
other existing pixel-based approaches in terms of classification accuracy and processing time. 
 
The grassland mapping workflow presented in Figure 3-59 shows a general overview of the workflow 
applied. In the first step the Sentinel-1 and Sentinel-2 time series, which are used as input data are 
downloaded and pre-processed. The pre-processing of S-1 time series is based on Level-1 products in 
Interferometric Wide swath (IW) mode and Level-1 Ground Range Detected (GRD). The IW mode is 
considered the main acquisition mode over land and satisfies the majority of service requirements. 
For each Sentinel-1 orbit, the pre-processing is calculated separately as multi-temporal filtering can 
only be applied to images of the same orbit. In addition, a local incidence file is calculated for each 
orbit stack and delivered with the data [AD07]. Additionally, temporal statistics have been calculated 
which are used as input data for the time series classification processing chains. The temporal 
features generated are the minimum, maximum, mean, standard deviation, coefficient of variation 
and percentiles. The Sentinel-2 Level-1C products are automatically downloaded from the CopHub 
and processed including following steps: atmospheric correction, topographic normalization and 
cloud masking. In turn, the Sentinel-2 sensor system has an overall number of 12 bands from 10 m to 
60 m spatial resolution, thus only the 10 m and 20 m bands are used. Further vegetation indices are 
derived from the Sentinel-2 data sets for each image and are used for the generation of 
multitemporal features. Based on the reflectance bands and the vegetation indices, annual features 
like median, mean, maximum, minimum and standard derivation and percentiles are derived and 
used as input for the classification method. Several classification algorithms can be applied. Since the 
Random Forest algorithm showed good results in phase 1 in the WEST demonstration site it was 
applied in phase 2 in other sites. LUCAS 2018 has been used as reference data for training. The 
output of the machine learning classification approach are the thematic grassland layer and 
probability for each pixel for belonging to a certain class. 
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Figure 3-59: Grassland mapping workflow overview. Sentinel-2 (S2); Sentinel-1 (S1); Land Use and Land 

Cover Survey (LUCAS). 

 
The aggregation is done by taking into account the probabilities, the MMU. Further, the use intensity 
is derived only within the grassland mask. The final products are statistically assessed. A blind 
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approach is applied to start with and then a plausibility analysis is implemented for all layers 
considering the information of the map layer. 

3.3.3.1 Description of candidate methods 

CLASSIFICATION METHODS 

THRESHOLD SCHEMES 

In order to classify grasslands out of S1 time features a set of training areas were ascertained and 
from these samples, the signatures were extracted. The spectral signatures from S1 of the classes 
grassland/no-grassland cluster show a good differentiation, enabling a successful grassland/no-
grassland classification based on thresholding to the different features. Grasslands detection by 
Sentinel-1 data is based on VV polarization annual statistics applying minimum and maximum 
thresholds for VV annual mean and for VV annual coefficient of variation for years 2016 and 2017. 
The thresholds are derived by a 95% fitting of 700 grassland reference plots manually selected from 
2017 VHR imagery at the WEST demonstration site. 

RANDOM FOREST  

The Random Forest (RF) classifier first proposed by Breiman 2001 belongs along with other boosting 
and bagging methods as well as classification trees in general to the ensemble learning methods, 
which generate many classifiers and aggregate their results to calculate their response (Liaw and 
Wiener, 2002; Horning et al., 2010; T. Li et al., 2016). The random forest algorithm generates 
multiple decision trees with randomly drawn subsets, instead of using all variables from the available 
data. The subsets are drawn with replacement, meaning that one sample can be selected several 
times, while others may not be selected at all (Belgiu and Dragut¸, 2016; Ali et al., 2012). Regarding 
each random sample, a classification or regression tree is grown to the largest possible extent 
without pruning. At each node, a random sample of a predictor variable is extracted; among those, 
the best split is chosen. To predict new data the prediction among all trees are aggregated using 
majority votes. The class with the maximum vote overall decision trees is the one selected for the 
output product (Liaw and Wiener, 2002; Ali et al., 2012). One advantage of the classifier is the 
calculation of the variable feature importance. In this context, the relative importance of variables is 
calculated for each feature available for both optical and SAR data. This classifier has been selected 
also for the other thematic topics in ECoLaSS due to its satisfactory performance in phase 1 
implementations.  
 
West test site 
 
In phase 1 for training and validation, 3408 LUCAS points covering the Belgium site are visually 
interpreted based on the Sentinel-2 time series data from 2016 until 2017. The interpreted points 
were randomly split into training and validation data sets at a ratio of 66% training to 33% validation. 
Furthermore, the eight land cover classes are aggregated to grassland / non grasslands classes. In 
phase the LUCAS 2018 dataset is used, where some points are filtered based on database queries. 
With the aggregated classes the random forest model has been trained using temporal and spectral 
variables with the same input parameters with the number of trees set to 500 and the number of 
variables to the square root of the total number of input variables. From the training models the 
Mean Decrease Impurity measure is calculated for each feature based on the aggregated classes. 
Finally, the output classifications are treated as thematic layers and validated against the remaining 
points not used for training using a point-based method. The accuracy is assessed with confusion 
matrices and accuracy metrics. 
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Central test site 
 
Likewise, in the Central test site (tiles 32TNT and 32UNU), respectively 744 and 685 samples were 
derived from the HRLs 2015 reference maps and LUCAS 2018, filtering by the Observation Type 
attribute to be sure the point had been interpreted from a reasonable distance limit. As explained in 
section 2.1 referring to automatic sampling, outlier detection is a key step in this process. 
Accordingly, an outlier detection based on spectral signals is carried out by means of applying zonal 
statistics for 30x30 m samples. In addition, some manual sampling has been applied in the test sites. 
In this case, the interpreted points were randomly split into training and validation data sets at a 
ratio of 50% training to 50% validation. With the aggregated classes the random forest model has 
been trained using temporal and spectral variables with the same input parameters with the number 
of trees set to 250 and from the training models the grouped forward feature selection was used.  
 
South-East test site 
 
In the South-East site, the LUCAS 2018 points were used as trainings samples. In total 3871 LUCAS 
samples were available in the demonstration site, of which 743 belonged to the grassland classes. 
LUCAS data were filtered by identical criteria to the demonstration site West lined out in Table 3-41. 
After filtering, 2168 LUCAS samples remained (482 grassland samples), of which 25% were set-aside 
for internal validation. The LUCAS land-cover classes were then converted into binary form, that is, 
“grassland” and “non-grassland”. 

GRASSLAND INTENSITY MAPPING METHODS 

TRACKING WITH KALMAN F ILTER: 

Previous work on the mapping of grassland use intensity has shown that mowing events are related 
to abrupt drops of the NDVI level. Therefore, the initial approach was characterized by the attempt 
to track the NDVI level of a given pixel through time with a Kalman filter and to label abrupt and 
statistically significant drops as mowing event. The filter should be able to follow gradual NDVI 
changes, also in the presence of larger gaps in the time series, without signaling a mowing event. 
While early tests indicated the validity of the approach in good conditions, they also showed 
problems caused by sparse observation availability, the inevitable presence of un-masked clouds and 
haze, or increased soil moisture, which can affect the NDVI level in a similar way as a mowing event 
does. It is expected that the detection of mowing events based on a single spectral index is not 
reliable enough. An approach based on multiple observables is deemed favorable, because it offers 
the possibility to search for specific multivariate change vectors associated to mowing events.  
 
The harmonic regression tests with time series of the Tasseled Cap components Brightness, 
Greenness, and Wetness, which have been conducted in an earlier phase of the project, provided 
the basis for further development. The Greenness signal is highly correlated with the NDVI, 
therefore mowing events also correspond to abrupt drops of the respective signal level. In addition, 
the Wetness signal is systematically affected by mowing events in a similar way, because the 
removal of healthy biomass after a mowing event causes an increase of the soil reflectance. Hence, 
the idea is to apply the signal-tracking approach to the Tasseled Cap components and thus take 
information from six input bands (blue, green, red, NIR, SWIR1, SWIR2) into account. The 
implemented algorithm signals a mowing event if a statistically significant change vector in the two-
dimensional feature space created by Greenness and Wetness is detected and its direction 
corresponds to a drop of both variables. The statistical significance is influenced not only by the 
change vectors’ magnitude, but also by the length of the time gap between consecutive 
observations. Large gaps in the time series will result in a lower sensitivity of the detection method, 
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because the algorithm has not enough information to distinguish between abrupt and gradual signal 
changes. 
 
The following figures illustrate time series corresponding to single grassland pixels with varying 
number of mowing events. For each case, the observed six input bands are plotted together with the 
Kalman filter predictions. A second plot shows the estimated Tasselled Cap components and the 
associated 95% confidence intervals. Mowing events signalled by the algorithm are marked as well 
and the corresponding changes of the signals can be observed.  
 
 
 
 

Figure 3-60: Multispectral time series of a single grassland pixel, one mowing event according to INVEKOS. 
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Figure 3-61: Variables estimated by the Kalman filter from the observations plotted in Figure 3-60. 

 

Figure 3-62: Multispectral time series of a single grassland pixel, two mowing events according to INVEKOS. 
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Figure 3-63: Variables estimated by the Kalman filter from the observations plotted in Figure 3-62. 
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Figure 3-64: Multispectral time series of a single grassland pixel, three mowing events according to INVEKOS. 

Figure 3-65: Variables estimated by the Kalman filter from the observations plotted in Figure 3-64. 
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Within Task 3, tests in the Central site on a new product were carried out which provided more 
details for the detected grassland areas, regarding the mowing intensity. The resulting mowing 
intensity layer at 10m spatial resolution is based on the number of mowing events detected. For this 
purpose, NDVI time series are used to derive a layer showing the number of mowing events. This 
layer is then clipped to the grassland mask and re-classified by defining the extensive use category 
when less than or equal to two mowing events are detected during the year.  
 
The intermediate product generated is the number of mowing events. At first, the coherence 
features from SAR data were tested, although according to the accuracy versus performance 
benchmarking (e.g., computation costs, product quality and timeliness, etc.) and taking into account 
the upscaling of the products to larger scales in a cost-efficient manner, another approach was 
selected instead for implementation in the demonstration site. Coherences are highly sensible to 
changes, even on micro-level, and therefore, events like heavy rainfall are likely to make coherence 
images unusable for intensity analysis. This is highly risky, besides the expense of the processing of 
SAR coherences, when considering automation and large scale products. Consequently, in Central 
the approach based on NDVI time series has been applied.  
 
NDVIs were computed for all scenes available in 2018 to detect mowing events all throughout the 
year by subtracting consecutive NDVI acquisitions and a rule based classification, defining that all 
pixels with >=3 mowing events are intensively used and 0-2 mowing events means extensively used, 
in terms of mowing events. The following Figure sketches the workflow applied in the mowing 
intensity layer generation:  
 

 

Figure 3-66: Intensive/Extensive grassland use layer workflow. 

 
As for the other grassland layers, filtering improves significantly the look and feel by reducing noise. 
For the mowing intensity layer, a filter of 4 pixels in size was applied. All areas within the grassland 
mask where filtered, so that there is no patch for one of the two intensity classes smaller than 5 
pixels in the end. Within small grassland patches, it might happen that e.g. 3 pixels are classified as 
extensive and 2 are classified as intensive. In such cases, the filter would cause the class values to 
jump between classes with each filter iteration without getting a patch of 5 unique values. If so, it 
was filtered in favour of intensive use because most of the areas are used intensively in the region. 
This layer is also useful to check for natural grasslands if it is assumed that the latter are present 
when no mowing events are detected at all. For this assumption to be more reliable, a longer time 
series (e.g., several years) should be considered.  
 
The Figure below shows the test in Central for the grasslands mowing intensity in 2018.  



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 177| Issue/Rev.: 2.0 

 

 

Figure 3-67: Grassland mowing intensity in Central 2018. 

 
In Figure above, and in Figure 3-68 it can be observed that grasslands are extensively managed in 
Alpine regions whereas more intensively in valleys around settlements.  
 
 

 

Figure 3-68: Detailed view of the grassland mowing intensity layer compared to Bing Maps Aerial of the 

same region, showing more intense management is concentrated in valleys around human settlements. 

3.3.3.2 Benchmarking criteria 

In the following chapter, the benchmarking criteria applied for the grassland status mapping are 
described, including visual inspections with reference data, thematic accuracy assessments, 
separability analysis and cost efficiency evaluations. 

FEATURE IMPORTANCE/SELECTION: 

Different Features selection methods are applied and tested. Seasonal and annual statistical features 
are investigated regarding the grassland status and intensity mapping to achieve the optimal set of 
features/indices per biographic region/elevation stratum. The random forest algorithm offers two 
methods for feature selection and importance measurements. The first is the mean decrease 
impurity measure and second the mean decrease accuracy measure (Breiman, 2001). Further, the 
grouped forward feature selection method based on decision trees is also tested. 
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MEAN DECREASE IMPURITY 

Within the forest generation every node in the decision trees is a condition on a single feature to 
split the dataset. The Mean Decrease Impurity (also known as Gini importance) measure, calculates 
the sum of the total impurity reductions at all tree nodes where the variable appears (Breiman, 
2001). Therefore, each feature importance represents the sum over the number of splits across all 
trees that include the feature, proportionally to the number of samples it splits (Louppe et. Al, 2013). 
One drawback of this method is that the mean decrease impurity measure is biased towards 
preferring variables with more categories. Another drawback is when the dataset is composed of 
correlating features, which can be assumed to have the same importance. Nevertheless, the first 
feature analysed reduces the importance of other correlating features (Louppe et. Al, 2013). 

MEAN DECREASE ACCURACY 

Another feature selection method is the Mean decrease accuracy, which measures the accuracy 
reduction on out-of-bag samples when the values of the variable are randomly permuted (Breiman, 
2001). In other words, the relative change in classification accuracy between the permuted values is 
calculated. After each permutation, the mean decrease accuracy measures the effect of the 
permutation on the model accuracy. Regarding less important variables, the mean decrease 
accuracy measurements should show no effect on the model accuracy in contrast to the important 
features. One drawback is that the estimates are biased if the predictor variables are highly 
correlated (Genuer et. al., 2010).  

GROUPED FORWARD FEATURE SELECTION 

The generation of suitable time series time features, especially consider upscaling and in particular 
the pan-European or global roll-outs, is challenging and require large computation capacities. 
Indeed, many reasonable combinations of time series metrics, sensor bands, indices and suitable 
temporal windows are conceivable, leading to a potentially quite large number of potential features. 
The testing experiences in Task 3 for grasslands in Central contributed to the definition of the 
classification parameters and proved the temporal windows and features that were performing best. 
In this regard, the Random Forest classification algorithm provides information about feature 
importance.  
 
In parallel to the new feature calculation and analysis, the grouped forward feature selection 
method was applied in the tests in Central. The grouped forward feature selection method adapted 
and embedded in the Random Forest classification process is based on the sequential feature 
selector integrated in the machine learning package (python module scikit-learn in the machine 
learning extension MLxtend).  
This sampling method is used to reduce an initial d-dimensional feature space to a k-dimensional 
feature subspace where k < d. The goal of feature selection is two-fold: improve the computational 
efficiency and reduce the generalization error of the model by removing irrelevant features or noise. 
This wrapper removes or adds one feature at the time based on the classifier performance until a 
feature subset of the desired size k is reached. The difference with other methods like the Recursive 
Feature Elimination, is that the latter is computationally less complex using the feature weight 
coefficients (e.g., linear models) or feature importance (tree-based algorithms) to eliminate features 
recursively whereas the forward feature selection eliminates or adds features based on a user-
defined classifier/regression performance metric. The algorithm finally yields a combination of the 
features with the highest accuracy. This subset of features is used for the classification process. 
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THEMATIC ACCURACY 

The thematic accuracy assessment is performed by comparing the classified grassland products with 
one of the above mentioned reference data sets. The main purposes of the accuracy assessment and 
error analysis are to permit quantitative comparisons between several methods (Congalton, 1991). 
Maps produced from different input images classified with different methods will be evaluated using 
a point-by-point comparison. The thematic accuracy of the classification results is assessed with an 
error matrix and following accuracy metrics: Overall Accuracy and Error, User’s accuracy, Producer’s 
accuracy, Kappa Coefficient and Confidence Intervals, following the principles from section 2.4.  

3.3.3.3 Implementation and Results of Benchmarking 

This chapter is focusing on benchmarking the time series classification methods for grasslands. The 
classification methods applied are threshold schemes applied in the West test site in Belgium and 
Random Forest classifier applied in all test and demo sites.  
 
The main focus of the benchmarking lies in the evaluation of different temporal input features for 
the classification approaches which are based on spectral information. These input features are 
derived from SAR and optical time series data.  
 

3.3.3.3.1 Demonstration site WEST 

In the demonstration site, WEST testing and benchmarking has been performed in both phases. In 
phase, 1 threshold schemes and the Random forest classifier are tested. Since the Random forest 
provided promising results, it has been further tested and applied in phase 2. Additionally, S1 
coherence and S2 harmonic region parameter features are tested regarding the grassland non-
grassland discrimination. 

REFERENCE DATA 

The first reference data set used is “Landbouwgebruikspercelen ALV, 2016 “(LGP) provided by the 
Departement Landbouw en Visserij. The dataset presents a polygon-wise assessment for the year 
2016, differentiating between several agricultural areas including cultivation crops and grasslands. 
Since the reference data set was composed for agricultural purposes, this reference data set does 
not include following features, which are included within the grassland definition (see Table 2-2). In 
this sense, in the development of the ECoLaSS prototypes it was decided that for an automated 
approach, and homogeneity purposes for a potential larger scale roll out at a Pan-European level, 
the grasslands nomenclature should remain general, without differentiation between the categories 
below.  
 
 Grasslands in urban areas: parks, urban green spaces in residential and industrial areas, sport 

fields, golf courses 
 Natural grasslands on military sites, airports 
 Grasslands on land without use 
 Semi-arid steppes with scattered Artemisia scrub 
 Coastal grasslands, such as grey dunes and salt meadows located in intertidal flat areas with at 

least 30% graminoid species of vegetation cover 
 
In further developments, as is the case in the forest with the dominant leaf type and tree cover 
density, and agriculture products with the crop types maps described in this document, the 
grassland binary mask can be enriched with more detailed classes like the ones listed above. In 
ECoLaSS the use intensity layer is designed as such: a higher detail layer on the grassland areas 
defined in the grassland/non-grassland mask. 
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A further reference dataset has been created by Joanneum Research through visual interpretation. 
The dataset is based on the LUCAS 2012 points located on the demonstration site West. The 
reference for the interpretation is the Sentinel-2 and Landsat-8 time series from 2017 and 2016. A 
Minimum Mapping Unit (MMU) of 30m x 30m has been applied in the interpretation process. 
Additionally, high resolution data like Bing maps (ArcGIS Basemap layer, RGB imagery) or Arc2Earth 
imagery (Google commercial ArcGIS plugin, RGB imagery) and VHR data ordered from the DWH have 
been used.  
 
It is necessary to compare both reference datasets to assess their quality. Therefore, only VIRP 
points located within the LGP polygons are compared with each other as shown in Table 3-40: 
Reference data comparison LPG2016 vs VIRP2016. Reference data comparison (LGP2016 vs 
VIRP2016). 
 

Table 3-40: Reference data comparison LPG2016 vs VIRP2016. 

 
 

  
LGP2016 

  
Grassland Others Total 

VIRP2016 

Grassland 144 6 150 

Others 13 283 296 

Total 157 289 446 

      Overall Agreement [%] 95.74 
    Kappa 0.91 
     

Differences can be observed between the two data sets due to different grassland definitions. The 
LGP polygons do not include urban green areas like gardens or parks, whereas the interpreted VIRP 
points follow the grassland definition described in Table 2-2. 
 
Both reference data sets are representing different geometry types. The newly interpreted LUCAS 
points (VIRP) present pointwise assessment, whereas the LGP shapefile present a polygon/parcel 
based assessment. Within the pointwise assessment method shrubs within a grassland parcel are 
labelled as grassland if the major part of the MMU (900m2) is covered by grassland. There is a 96% 
overall agreement and 94% grassland class agreement between VIRP2016 and LGP2016. For both 
reference data sets, misclassifications could be observed at parcel borders with mixed pixels in the 
satellite imagery. 
 
Additionally, LUCAS 2018 data is used within the Grassland benchmarking and prototype generation. 
It is recommended to use only homogenous LUCAS points where the distance from the interpreter 
to the point location is less than 100m. Following attributes from the LUCAS 2018 table can be used 
for the selection of homogenous points. 

Table 3-41: LUCAS 2018 inclusion rules. 

Inclusion Rules Comments 

"OBS_TYPE"= 1 or "OBS_TYPE"= 3 
 

1: In situ < 100 meter 
3: In situ PI 
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Inclusion Rules Comments 

"CPRN_LC1N" >= 20 and "CPRNC_LC1E" >= 20 and 
"CPRNC_LC1S" >= 20 and "CPRNC_LC1W" >= 20 
 

If the point is a Copernicus point it will be excluded if 
the homogenous LC is smaller than the circle with 20m 
radius. 

"PARCEL_AREA_HA" >= 2 
 

2: 0.1ha <= area < 1ha 
 

"LC1_PERC" = 100 
 

Land cover percentage 

 

S1 COHERENCE: 

The InSar coherence products are derived from Sentinel-1 SLC data [AD07]. Regarding the 
processing, 6-day and 12-day and 18-day coherence products were generated based on Sentinel-1A 
and Sentinel-1B SLC imagery for different time periods in 2018, e.g. March/April, April/May, 
April/June and for the entire period from February to November 2018. The coherence estimation 
has also been performed for different output resolutions, i.e. 20m and 40m. Based on the outcomes 
of WP 32 6-day coherence in 20m resolution images from different time intervals seemed the most 
promising features and are tested and analysed regarding their potential for grassland and grassland 
mowing intensity mapping. 
 

 

Figure 3-69: InSar Coherence 6-days (March-October). 
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Figure 3-69 shows an RGB image of the 6-day coherence product (2017 March - October) including 
the Coefficient of Variation, Mean and Minimum statistics. In comparison to the World View 2 
reference image from 2017, the delineation of agricultural fields are blurred compared to the WV2 
VHR image. The exact field structures are not displayed in a detailed manner, i.e. border lines or 
ratio of field sizes. Further urban areas are largely overrepresented. The reason for this is that the 
coherence is calculated from SLC (Single Look Complex; https://sentinel.esa.int/web/sentinel/user-
guides/sentinel-1-sar/resolutions/level-1-single-look-complex ) data with 40m spatial resolution. 
This spatial resolution does not support better resolution image quality, although the data have 
been resampled to 20m for better calculation. Consequently, a pixel-based approach cannot be 
recommended for data types with such high difference of spatial resolutions. This deviation in 
resolutions can lead to inaccurate results due to geometric problems if a pixel wise classification 
approach is performed. 
 
 

 

Figure 3-70: Feature importance S1 coherence, S1 backscatter time features and S2 time features 

(reflectance + indices) 

Further tests have been conducted using the 6 day coherence products in the Random Forest 
feature selection approach. Figure 3-70 shows the results of the feature selection using S1 and S2 
time series features in combination with the coherence features. The LUCAS 2018 points which serve 
as training dataset for the Random Forest classification are used to derive the feature importance. 
The results show that the coherence features are not considered as important by the analysis 
method. The aforementioned geometric issues have a negative impact on the value of the 
coherence product. 
 
 
 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex
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S2 HARMONIC REGRESSION PARAMETERS 

Dense Sentinel-1 SAR and Sentinel-2 optical time series data are used to derive temporal parameters 
with the aim to distinguish between land cover type or even intensively and extensively managed 
grasslands. A signature analysis showed the potential for this separation, especially during the early 
stages of the phenological cycle in spring. Several differences between the fitted curves can be 
observed, for example the value of the trend parameter c0, the composition of the seasonal pattern 
with respect to the amplitudes of the different frequencies, and the minimal value and range 
(difference max, min) of the fitted curve. 

 
The regression model, which has been fitted to the time series of each pixel of the test site, is given 
below. It features a constant trend as well as a seasonal component of 3 frequencies, thus there are 
7 parameters to estimate. To introduce a certain degree of over-determination, the minimum 
number of available unmasked observations required to carry out the IRLS procedure is set to 14.  

𝑧 𝑡 = 𝑐0 +  𝛼𝑗 cos 𝜔𝑗 𝑡 + 𝛽𝑗 sin 𝜔𝑗 𝑡 

3

𝑗=1

 

 

The first step of the implemented test set-up is to eliminate remaining gross outliers in the data set 

caused by unmasked clouds, snow, and cloud shadows. It is assumed that these outliers are visible 

more prominently in the time series of Tasseled Cap Brightness, subsequently referred to simply as 

Brightness. The coefficients for the Tasseled Cap transformation were taken from (Crist, 1985). 

Clouds and snow are expected to cause unusually high Brightness values, whereas cloud shadows 

should correspond to low magnitudes of Brightness. An example of a Brightness time series for a 

single grassland pixel is given in Figure 3-71. Additional to the observations, the results of an OLS fit 

on the one hand and an IRLS fit on the other are plotted. The OLS solution is influenced by the 

outlying values in the series, whereas the robust IRLS fit is not. The weights assigned to each 

observation by the IRLS procedure are plotted in Figure 3-71 and it can be seen that 4 weights are 

zero. Using Figure 3-71, it can be verified that weights of zero in Figure 3-72 correspond to 

anomalous observations. Therefore, all observations with an assigned weight of zero are excluded 

from further processing steps.  
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Figure 3-71: Example of a Tasseled Cap Brightness time series of a grassland pixel and fitted regression 

models using OLS and IRLS. 

 

 

Figure 3-72: Computed observation weights of the IRLS fit. 

The second step of the implemented test set-up is to fit the regression model to the time series of 

Tasseled Cap Greenness, subsequently referred to simply as Greenness, which is assumed to be an 

appropriate spectral index to capture vegetation dynamics. Since most outliers should have been 

eliminated in the previous step, OLS is used to estimate the parameters. Taking the same grassland 

pixel as discussed above, the associated Greenness time series is plotted in Figure 3-73. 
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Figure 3-73: Example of Greenness time series of a grassland pixel and fitted regression models using OLS. 

Inspecting Figure 3-73 several observations can be made: 

 Two mowing events designated by abrupt jumps in the Greenness level can be clearly 
identified, with a possible third one indicated somewhere at the end of August. 

 The time series model cannot capture the high temporal dynamics of the mowing events 
since it does neither account for abrupt jumps nor short growing periods of only one month. 

 The Greenness level of the outliers identified as cloud shadows is similar to the level after a 
mowing event, thus a confusion of the two conditions is possible. This emphasizes the 
necessity of outlier detection. 

 

Figure 3-74: Comparison of an agricultural pixel to a grassland pixel. 
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Although the time series model cannot capture abrupt jumps, the set of estimated parameters may 

still be interpreted as a compressed form of the multi-temporal information contained in the image 

stack. While the parameters do not reflect all the variation in a time series, they might hold enough 

information to separate different land cover/land use classes. The idea is illustrated in Figure 3-74, 

where the Greenness time series of an agriculture pixel is contrasted with the time series of the 

previously used grassland pixel. The same workflow has been applied to obtain the OLS fit. Several 

differences between the fitted curves can be observed, for example: 

 the value of the trend parameter c0, 

 the composition of the seasonal pattern with respect to the amplitudes of the different 
frequencies, and 

 the minimal value and range (difference max, min) of the fitted curve. 

 

The parameters αj and βj can be converted to amplitude values Aj using  

𝐴𝑗 =  𝛼𝑗
2 + 𝛽𝑗

2 

Additional to the parameter values, the OLS method also yields the covariance matrix of the 

estimates, which can be further used to derive the uncertainty of the amplitude values. Figure 3-75 

contrasts the trend and amplitude parameters of the agriculture pixel with the corresponding values 

of the grassland pixel. The 90% confidence interval of each estimate is also illustrated, suggesting 

that there is a statistically significant difference in the c0 and A2 parameters. A possible approach to 

detect anomalies and indicate change is to carry out hypotheses tests to determine if one or more 

parameters have significantly changed from one year to another. 

 

Figure 3-75: Greenness trend and amplitudes of an agriculture and grassland pixel. 

 

A different example illustrates the behaviour of a grassland pixel in consecutive years. Figure 3-74 
shows the time series of Greenness and Figure 3-75 the corresponding values of the trend 
parameter as well as the amplitudes of the seasonal components. While the fitted curves look very 
different, the overall trend and the amplitudes stay roughly at the same level when their confidence 
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intervals are taken into account. The change in the appearance of the fitted curves can be explained 
by phase shifts in the seasonal components. 
 

 

Figure 3-76. Regression function second order (R: A1 

G: A2 B: P1). 

 

Figure 3-77: Regression function third order (R: A1 G: 

A2 B: A3). 

 

Although this represents a promising approach also for discrimination of grassland management 
regimes it is necessary to have dense time series. Large gaps in the time series model as well if the 
first observation is very late and the last observation available is too early, result in unusable 
artefacts. Further using the 3 order frequency is better suited for grassland management regime but 
it needs at least 15 observations to generate valid results. Due to the high number of minimal 
observation needed the results is comprised with large Nodata areas. Therefore, the features are 
not considered useful in the random forest feature importance and are further not applicable in an 
operation large-scale approach. 

THRESHOLD SCHEMES APPLIED ON S1 DATA 

 
The SAR2017 image stack is derived over the year until 15.11.2017 embracing 52 different images. 
All images are representing one orbit (asc161) and the VV polarization. The stack represents six 
different features (Minimum, Maximum, Mean, Standard derivation, Coefficient of variation and the 
difference between the first three images and the last three images of the time period). Again the 
classification is based on thresholding for the features "Mean" and "Coefficient of Variation" of the 
annual stack. The thresholds were derived by a 95% fitting of 700 grassland reference plots. 
 
The error matrices for the 2017 SAR classification for both reference datasets (VIRP-2017 and 
LPG2017) are depicted in Table 3-42 and Table 3-43. 
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Table 3-42: Confusion matrix using VIRP-LUCAS points and the threshold based S1 classification for 2017. 

  
Classification 

  
Grassland Others Total PA [%] 

Ground Truth 

Grassland 523 166 689 75.91 

Others 170 2507 2677 93.65 

Total 693 2673 3366 
 UA [%] 75.47 93.79 

  

      Overall Accuracy [%] 90.02 
    Kappa 0.69 
    

 

Table 3-43: Confusion matrix using LPG2016 points and the threshold based S1 classification for 2017. 

  
Classification 

  
Grassland Others Total PA [%] 

Ground Truth 

Grassland 105 45 150 70 

Others 31 265 296 89.53 

Total 136 310 446 
 UA [%] 77.2 85.48 

  

      Overall Accuracy [%] 82.96 
    Kappa 0.61 
    

 

 
 

 

Figure 3-78: SAR grassland threshold-based 

classification for 2017 (grassland in yellow). 

 

Figure 3-79: LGP grassland areas in red. Basis layer: 

ArcGIS Basemap. 

 

Figure 3-78 and Figure 3-79 show the threshold based classification approaches results compared 
with the agricultural grassland features. As both figures show the SAR data classification approach 
tends to less homogeneous patches due to the speckle noise in the SAR data and to misclassify 
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streets and other roads. Nevertheless, there is only a small confusion between grasslands and 
agricultural fields. 

 
For all reference data sets, many misclassifications are at parcel borders with mixed pixels in the 
satellite imagery. Largest misclassifications occur for waterbodies (minimum threshold for annual 
SAR VV mean is too low), bare soil, and artificial surfaces which also feature low mean backscatter 
and little variance over time. These areas can however easily be removed with optical data (e.g. all 
features are characterized by very low NDVI values). 

TEST FOR CONFUSIONS 

For better understanding, the confusion between grassland and other classes, the classification 

result of SAR2017 is compared with the VIRP points 2017. Therefore, those plots were evaluated 

which are classified as grassland in SAR2017 and not grassland in VIP2017 resulting in 166 overall 

wrongly classified samples (see Table 3-44). 

Table 3-44: SAR threshold based grassland classification confusions. 

Reference class definition  with the percentage of total in the class 

Cropland 55 of total 1189 = 4,6% 

Forests and Trees 41 of total 945 = 4,3% 

Shrubs 4 of total 78 = 5,1% 

Artificial Surfaces & Associated 
Area(s) 

32 of total 382 = 8,4% 

Bare Area(s) 6 of total 29 = 20,7% 

Waterbodies, Snow and Ice 27 of total 49 = 55,1% 

Wetlands 1 of total 1 = 100% 

 
Largest misclassifications occur for waterbodies (minimum threshold for annual SAR VV mean is too 
low), bare soil, and artificial surfaces which also feature low mean backscatter and little variance 
over time. These areas can however easily be removed with optical data (e.g. all features are 
characterized by very low NDVI values). Since the threshold based classification results in lower 
accuracies in comparison to machine learning algorithms, analyzed in phase 1, this approach is not 
further applied and tested in phase 2. 

RANDOM FOREST BASED GRASSLAND CLASSIFICATION WITH SAR DATA 

The Random forest algorithm derived good results in phase 1, therefore further tests were applied in 
phase 2. First, the use of annual and seasonal statistical time series features are tested using only S1 
data. In total 40 annual and seasonal S1 features are calculated as described in chapter 3.1. The 
feature importance for the SAR features including both polarizations (VV, VH) are estimated with the 
Mean Decrease Impurity measure (also known as Gini importance). The feature importance is 
estimated for a grassland/non grassland separation. Earlier tests differentiating between 8 land 
cover classes have shown that the feature importance for the separation of all 8 classes is not 
significantly lower or higher. Providing all in chapter 3.1 mentioned features the feature selection 
dominantly includes seasonal percentile 90, median and the standard deviation statistics. It is 
recommended to exclude the seasonal percentile, CoV and standard deviation features, due to 
instability in short periods. 
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Figure 3-80: OBB error in relation the number of S1 input features. 

 

 

Figure 3-81: Top 10 S1 features for the grassland discrimination. 

Figure 3-81 shows that both polarizations provide complementary information for the grassland 
identification. Both seasonal and annual features are considered useful for the grassland separation. 
All three mosaic over a two-month period are important for the discrimination of cropland and 
grasslands, but the spring period (April-Mai) and the summer period (June-July) are considered as 
more useful. Figure 3-81 also presents the feature selection results with the top 10 S1 features. The 
features are limited to 10 since it is shown in Figure 3-80 that the OOB (Out of Bag) error cannot be 
reduced using more than 10 features. Regarding the feature importance, it should be noted that the 
first analysed feature shows a higher importance than other correlating features although they have 
the same importance. Therefore, it seems that the VV polarisation is less important, although it can 
be assumed that they have a similar importance. 
 
Using the results of the feature analysis a grassland probability map is produced using the 
aggregated classes grassland and non-grassland. Based on the probability RF probabilities the 
classification results re derived with different thresholds. One third of the VIRP points are used for 
internal validation purposes and benchmarking. It has to be noted that using LUCAS points for 
validation purposes only allows to calculate count based accuracy metric, due to the fact that the 
inclusion probabilities of the points are not provided to the users. 
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Table 3-45: Count based accuracy metrics (in %) for random forest based classification for 2017 using S1 

features. 

  
SAR 2017 

>50% 
SAR 2017 

>55% 
SAR 2017 

>60% 
SAR 2017 

>65% 
SAR 2017 

>70% 

Producer Accuracy 75.93 71.37 66.39 60.17 56.43 

User Accuracy 58.84 62.32 67.23 70.39 75.98 

Overall Accuracy  83.63  84.77  86.00  86.18  86.96 

 

Table 3-46: Count based accuracy metrics (in %) for random forest based classification for 2018 using S1 

features. 

  
SAR 2018 

>50% 
SAR 2018 

>55% 
SAR 2018 

>60% 
SAR 2018 

>65% 
SAR 2018 

>70% 

Producer Accuracy 67.63 63.9 59.34 52.28 45.64 

User Accuracy 53.44 57.04 61.37 65.97 70.51 

Overall Accuracy  80.63  82.13  83.45  84.14  84.42 

 
Table 3-45 and Table 3-46 show the first results of the grassland classification based on the selected 
S1 features. The results show that with higher probability thresholds the producer accuracy 
decreases whereas the user accuracy increases. The overall accuracy does not change significantly. 
Using the threshold with 60% shows a balanced result. The random forest classification results 
confirm the conclusions derived from the threshold-based classification results based on the SAR 
data sets.  
 
 
 
 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 192| Issue/Rev.: 2.0 

 

 

Figure 3-82: SAR grassland classification (grassland 

in yellow) with random forest and selected S1 

features for 2017 (p>60%).  

 

Figure 3-83: LGP grassland areas 2016 in green 

mapped on the World View 1 image from the 27. 06. 

2018.   

The classification results are filtered according to the defined MMU with 0.05 ha. Figure 3-82 and 
Figure 3-83 show that the filtered S1 classification tends to less homogeneous patches due to the 
speckle noise in the SAR data and misclassifications are detected at streets and other roads. 
Nevertheless, there is only a small confusion between grasslands and agricultural fields. 
 

RANDOM FOREST BASED GRASSLAND CLASSIFICATION WITH OPTICAL DATA 

Further the use of only S1 data is also tested. In total 420 annual and seasonal S2 reflectance and 
indices based features are calculated as described in chapter 3.1. Figure 3-85 presents the feature 
importance of the listed features and shows that the importance slightly varies between the 
reflectance features. 
 

 

Figure 3-84: OBB error in relation the number of S2 input features. 
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Figure 3-85: Top 40 S2 features for the grassland discrimination. 

Figure 3-84 shows the feature selection results with the top 40 S2 features. The selection is mostly 
comprised by different annual features, which provide a more stable information in comparison to 
the seasonal features, which have to deal with a higher number of no data values. Seasonal features 
are included from summer and late summer capturing the phenology differences between 
grasslands and crop areas. Especially the differences between the growth period (spring/summer) 
and late summer are important. The features are limited to 40 since it is shown in Figure 3-85 that 
the OOB (Out of Bag) error cannot be reduced using more than 40 features.  
 
According to the features selection analysis the most discriminative optical variables were then 
selected and the RF has been applied to derive a grassland probability map. Different thresholds are 
applied on the grassland probability maps to derive grassland/non grassland masks. To evaluate the 
classification performance, 1/3 of the VIRP points are used described in chapter 3.3.3.2. The results 
are presented in Table 3-47 and Table 3-48 showing that with higher probability thresholds the 
producer accuracy decreases whereas the user accuracy increases. As already shown with the SAR 
classification the overall accuracy does not change significantly. 
 

Table 3-47: Count based accuracy metrics (in %) for random forest based classification for 2017 using S2 

features. 

  
OPT 2017 

>50% 
OPT 2017 

>55% 
OPT 2017 

>60% 
OPT 2017 

>65% 
OPT 2017 

>70% 

Producer Accuracy 85.89 83.4 79.67 76.35 70.54 

User Accuracy 68.77 73.36 74.71 78.63 82.52 

Overall Accuracy  88.73  90.05  89.96  90.57  90.58 
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Table 3-48: Count based accuracy metrics (in %) for random forest based classification for 2018 using S2 

features. 

  
OPT 2018 

>50% 
OPT 2018 

>55% 
OPT 2018 

>60% 
OPT 2018 

>65% 
OPT 2018 

>70% 

Producer Accuracy 85.89 82.99 79.25 73.64 70.12 

User Accuracy 71.13 73.26 77.33 80.73 82.44 

Overall Accuracy  89.61  89.96  90.67  90.74  90.49 

 

 

Figure 3-86: Optical grassland classification with 

random forest and selected features for 2017 

(p>60%). (grassland in yellow) 

 

Figure 3-87: LGP grassland areas 2016 in green mapped 

on the World View 1 image from the 27. 06. 2018.   

 
Figure Figure 3-86 and Figure 3-87 show as expected, there is still confusion of grasslands with 
cropland areas which have high vegetation cover over the year. Compared to the SAR classification 
the grassland patches are more homogenous and show fewer gaps. Compared to the SAR 
classification, the producer accuracy increased whereas the user accuracy decreased which leads to 
the conclusion that a combination of SAR and optical should improve the result. 

RANDOM FOREST BASED GRASSLAND CLASSIFICATION WITH COMBINED S1 AND S2  DATA 

Further, it is tested if the combination of both sensors might improve the grassland identification. 
The combined data set includes 460 features, 40 SAR features and 420 optical features. Figure 3-88 
presents the feature importance of the listed features and shows that features of both sensors are 
included in the top 40 features. The features are limited to 40 since it is shown in Figure 3-89 that 
the OOB (Out of Bag) error cannot be reduced using more than 40 features. The selected variable set 
includes 13 SAR variables and 27 optical variables. It can be observed that the optical variables have 
a higher importance, indicating that the SAR variables are used to complement the optical variables. 
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Figure 3-88: OBB error in relation the number of S1 and S2 input features. 

 

 

Figure 3-89: Top 40 S1 and S2 features for the grassland discrimination. 

 
Different thresholds are applied on the grassland probability maps to derive grassland/non grassland 
masks. Those masks are statistically evaluated using the reference plots described in chapter 3.3.3.2. 
Table 3-49 and Table 3-50 show the results from the count based confusion matrices using optical 
and SAR variables. Globally the grassland mask is well separated. Using the 65% threshold produced 
the second highest overall accuracy and more balanced user and producer accuracies. Nevertheless, 
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it should be kept in mind that neither the classification maps nor the reference points are 
considering the MMU. 
 
The results are presented in showing that with higher probability thresholds the producer accuracy 
decreases whereas the user accuracy increases. The results show that with higher probability 
thresholds the producer accuracy decreases whereas the user accuracy increases. The overall 
accuracy does not change significantly. As already shown with the optical and SAR classification, the 
overall accuracy does not change significantly. 
 

Table 3-49: Count based accuracy metrics (in %) for random forest based classification for 2017 using S1 and 

S2 features. 

  
SAR/OPT 

2017 >50% 
SAR/OPT 

2017 >55% 
SAR/OPT 

2017 >60% 
SAR/OPT 

2017 >65% 
SAR/OPT 

2017 >70% 

Producer Accuracy 86.31 85.89 79.67 79.67 72.5 

User Accuracy 67.97 71.88 80 80 80.93 

Overall Accuracy  88.47  89.88  91.11  91.46  90.57 

 

Table 3-50: Count based accuracy metrics (in %) for random forest based classification for 2018 using S1 and 

S2 features. 

  
SAR/OPT 

2018 >50% 
SAR/OPT 

2018 >55% 
SAR/OPT 

2018 >60% 
SAR/OPT 

2018 >65% 
SAR/OPT 

2018 >70% 

Producer Accuracy 84.65 81.74 79.25 73.75 69.71 

User Accuracy 65.38 67.93 72.62 77.97 80.77 

Overall Accuracy  87.24  87.94  89.26  90.04  90.05 
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Figure 3-90: SAR + OPT grassland classification with 

random forest and selected features for 2017 

(p>50%). (grassland in yellow) 

 

Figure 3-91: LGP grassland areas 2016 in green 

mapped on the World View 1 image from the 27. 06. 

2018.   

 
Further tests are applied using only 10m features to reduce the problems caused by geometric 
difference between the two resolutions and to be able capture small linear grass features more 
reliable. The resulting grassland probabilities are masked with a Vegetation/Non-Vegetation mask 
derived from the MSAVI2 over the vegetation period percentile 90 statistical feature and an 
empirically derived threshold. The result are shown in Table 3-51 and Table 3-52. Although no 
significant difference can be seen in the statistical evaluation, the visual evaluation showed that 
confusions between water areas and grasslands can be avoided using the rule based masking 
approach. 
 

Table 3-51: Count based accuracy metrics (in %) for random forest based classification for 2017 using only S1 

and 10m S2 features. 

Only 10 m masked 
SAR/OPT 

2017 >50% 
SAR/OPT 

2017 >55% 
SAR/OPT 

2017 >60% 
SAR/OPT 

2017 >65% 
SAR/OPT 

2017 >70% 

Producer Accuracy 85.89 84.23 80.08 75.93 70 

User Accuracy 71.88 75.19 78.46 81.7 84.42 

Overall Accuracy  89.88  90.76  91.11  91.29  90.92 

 

Table 3-52: Count based accuracy metrics (in %) for random forest based classification for 2018 using S1 and 

10m S2 features. 

Only 10 m masked 
SAR/OPT 

2018 >50% 
SAR/OPT 

2018 >55% 
SAR/OPT 

2018 >60% 
SAR/OPT 

2018 >65% 
SAR/OPT 

2018 >70% 

Producer Accuracy 85.89 83.4 80.91 78.42 73.64 

User Accuracy 69.93 72.56 76.47 78.75 81.48 

Overall Accuracy  89.17  89.79  90.67  90.93  90.92 
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Figure 3-92: SAR + OPT classification 2017 10m 

aggregated: Omission errors (green). Classification 

(yellow) vs. LGP polygons 2016 (green) mapped on 

the World View 1 image from the 27. 06. 2018.   

 
Figure 3-93: SAR + OPT classification 2017 10m 

aggregated: Commission errors (in yellow). 

Classification (yellow) vs. LGP polygons 2016 (green) 

mapped on the World View 1 image from the 27. 06. 

2018.   

 
As Figure 3-92 presents, the omission errors include grassland patches with trees small grassland 
patches around agricultural fields and pasture which show a low grass cover. 
 
As interpreting Figure 3-93 which presents the commission errors the difference between the 
grassland definitions should be kept in mind. In other words, not all green features are commission 
errors since the grassland definition from the LGP polygons does not include grasslands apart from 
agricultural areas. The actual commission errors are quite low. Some agricultural field are mistaken 
for grassland if the vegetation cover is high over the whole year. 
 

 

Figure 3-94: World View 1 image 

from the 05.10.2018.   

 

Figure 3-95: S2 based 

classification mapped on the 

World View 1 image from the 

05.10.2018.   

 

Figure 3-96: S1/S2 based 

classification mapped on the 

World View 1 image from the 

05.10.2018.   
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Table 3-53: Thematic accuracy (in %) comparison of different features. 

 SAR 2017 p>60% OPT 2017 p>65% 
SAR/OPT 2017 

p>65% 
SAR/OPT 2017 10 m 

p>60% 

Producer Accuracy 66.39 76.35 79.67 80.08 

User Accuracy 67.23 78.63 80 78.46 

Overall Accuracy 86.00 90.57 91.46 91.11 

 
The classification result with SAR and OPTICAL combined datasets are quite encouraging. The 
combination of optical and SAR data showed significantly improved results with a producer accuracy 
of 79.67% (p>65%) and a user accuracy of 80% (p>65%) compared to using only S1 data and slightly 
better results compared with using only S2 data. The classification with combined datasets reduces 
SAR specific misclassification with roads and optical specific misclassifications with cropland and the 
optical data specific misclassification with tree orchards (see Figure 3-94, Figure 3-95, Figure 3-96). 
 
Although the accuracies for the S1/S1 combined approach in comparison with the S1/S1 combined 
approach using only 10m features, show no significant improvement, in the visual interpretation its 
can be seen that the 10m features can better capture small linear features. 
 

3.3.3.3.2 Demonstration site CENTRAL 

REFERENCE DATA 

For the grassland status layer in phase 2, the LUCAS 2018 points were used as additional trainings 
samples for test site central. In this case, the combination of the attribute observation type and the 
Copernicus module, was an effective way to select suitable samples. Additional samples were 
extracted from the HRL 2015, and manually selected to complete the reference datasets. As 
reported in the LUCAS 2018 feedback exchange with the EC and stakeholders [AD15], and other 
ECoLaSS deliverables, most issues with LUCAS points were found in the non-forest grassland class, 
which is explained by the fact that some points were collected in a transition area in between 
different land cover types (e.g., in the border between grasslands-forest areas). It was necessary to 
sample water bodies classes from additional datasets, other than LUCAS, as this minority class is 
underrepresented in the LUCAS dataset.  

GRASSLAND MAPPING 

 
The classification of grasslands in Central tests also proved the contribution of the SAR features to 
the improvement of the identification of grasslands. The combined approach, as can be observed in 
Figure 3-97, performs best. The visual inspection benchmarking criteria is key, as this enhancement 
is not totally clear from the accuracy statistics computed (i.e., from the confusion matrices, the 
overall accuracies and other quality metrics do not reflect this finding so evidently).  
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Figure 3-97: Comparison of multisensor grassland classifications: S1, S2 and combined in Central test site 

 
The tests were carried out deriving random forest probability estimations based on annual optical 
and SAR features (minimum, maximum, mean, median, standard deviation and percentiles) over the 
spring period (seasonal time windows) and the whole year (annual time windows). The later winter 
to spring time windows was also tested in the 2018 grassland mask. In the case of the 2017 product, 
the late winter to spring could not be calculated because of data gap from January to March. This 
suggests that for recurrent updates, the data situation (i.e., cloud cover) in specific time windows 
might locally affect the production on a yearly/seasonal basis. In any case, in view of the 
performances, it is found that the time period should not be too short, as otherwise, the results are 
not meaningful due to a low number of scenes involved that might be not representative. It must be 
remarked that in different biogeographical regions, as confirmed in the other test sites, the shorter 
time window (spring in this case) is likely to be different. The cornerstone in this regard is to define a 
time window where grassland and cropland (responsible class for most miss-classifications) are best 
separable (e.g., grassland already greening when crops are not grown yet). In the Mediterranean 
areas, as described in section 2.3., this window may be shifted more towards the winter (e.g., 
December to March). In tests including complex time features, the added value was rather small. 
The most important features in the tests were percentiles.  
 
Post-classification refinements consist of filtering based on a minimum pixel count of connected 
patches. All patches smaller than 5 pixels were removed to close wholes in grassland patches and 
remove very small. Filtering improves look and feel by reducing noise, caused by mixed pixels. 
Alternative approaches could imply a morphology filter which was not employed as it would change 
the shape of the classified patches. On the one hand, linear elements could have been removed by 
such a filter and, on the other hand, the patches nicely reflect the reality on the ground in most 
cases (i.e., the look and feel of the layer is satisfactory and the filter was not needed in the case of 
the Central tests). The improved grassland masks 2017 and 2018 at 10 m spatial resolution show 
more details when compared to the previous HRL 2015 at 20 m. When fulfilling task 4 scaling up to 
the larger demosite, limitations of the products to be taken into account were found in areas of 
higher elevation in the South, where snow cover is found for long periods of the year, hindering the 
classification accuracy locally (e.g., over- as well as underestimation of grassland was detected). In 
these areas, applying an elevation threshold enhances the classification results. Accordingly, a height 
threshold of 2800 m was applied for both status layers: all grassland above this height was removed. 
The refinements in the status layers clearly influence the performance in the change and 
incremental update products implemented in WP34 and WP35.  

 
The visual inspection of the combined S1/S2 classification against LPIS polygons shows very few 
commission (green) and omission (red) errors, as can be appreciated respectively on the left and 
right detailed screenshots for the 2018 grassland mask in Figure 3-98.  
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Figure 3-98: Omission and commission errors in the 2018 Grassland mask  

The probability layers were also computed, considered an associated pixel based quality metrics by-
product, mapping the areas where the classification is more reliable (Figure 3-99).  
 

 

Figure 3-99: Probability layer for the grassland classification 2018 in the Central test site 

The probability is dependent on the input data (which can be slightly different for each tile) and 
accordingly some tile border effects is present. As such, it is possible that the probability for 
grassland shows significant differences within a single patch that is located at a tile border. However, 
this is to be expected as the probability in the end shows how certain the classifier was in this 
specific case, with this specific data constellation, for a specific pixel to be grassland.  
 
For computing the corresponding error matrices, the area-weighted accuracy calculation is applied 
as described in section 2.4. The statistical validation is performed on the basis of a LUCAS sample 
with count based accuracy calculation.   
 
Once the grasslands status layers for 2017 and 2018 are produced, the change detection product is 
derived, as described in WP34 [AD08]. It must be remarked that the production of the change layer 
is in turn dependent on the status layers from which the change is derived.  
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GRASSLAND INTENSITY MAPPING 

 
Different tests were also carried out to derive a new and more detailed product in the grassland 
areas within the grassland mask. The use intensity layer at 10 m spatial resolution is based on the 
number of mowing events detected. The definition in ECoLaSS is that the binary mask produced 
within the grassland masks considers the grasslands are intensively used when three or more 
mowing events are detected, and extensively managed otherwise. In this sense, natural grasslands 
can be derived by considering no mowing events (i.e., zero mowing events detected).  
 
First, the coherence features from SAR data were tested, although in the end it proved not that 
satisfactory, and taking into account the upscaling of the products to larger scales in a cost-efficient 
manner, another approach was successfully tested instead and applied to the demosite scale. It was 
concluded that coherences are highly sensible to changes, even on micro-level, and therefore, 
events like heavy rainfall are likely to be messed up and make coherence unusable for intensity 
analysis, among other applications. This is highly risky, besides the expense of the processing of SAR 
coherences, when considering automation and large scale products. Consequently, in Central a more 
stable approach based on NDVI time series was elaborated and tested. Training samples are 
generated based on the IACS/InVeKoS samples through an outlier detection and an independent 
visual interpretation with Sentinel-2 time series data and additional VHR data if available. The use of 
temporal trajectories, seasonal statistical features and phenological features is investigated 
regarding the intensity to achieve the optimal set of features/indices per biographic region/elevation 
stratum. NDVIs were computed for all scenes available in 2018 to detect mowing events all 
throughout the year. 
 
Mowing events were detected by comparing NDVI minimums of consecutive acquisitions and a rule 
based classification, defining that all pixels with >=3 mowing events are intensively used and 0-2 
mowing events means extensively used. A first validation based on INVEKOS data (where available) 
is quite promising. In view of the tests results, it is clear that the high cloud coverage in 2018 in 
Central Europe limits the method of comparing NDVIs of consecutive acquisition dates. Mowing 
events may not be detected in areas covered by clouds for a longer period of time.  
 
For sampling and for the validation of the Grassland Use Intensity Layer the new grassland attributes 
in the LUCAS 2018 samples, available for some points of the LUCAS 2018 data in the demosite, 
would in theory be very helpful. However, as the number of points having these attributes is too 
low, and the sampling density might prove too low, the actual benefit could not be tested. The 
validation samples are extracted from INVEKOS Austria (i.e., German for LPIS/IACS), where available. 
INVEKOS Austria contains information about the mowing frequencies, which is perfect for validation. 
Unfortunately, this data is only covering Austria and therefore only parts of the demosite: two out of 
nine tiles in the case of Central. Consequently, the use intensity layer cannot be fully validated, nor 
at the demo scale nor for a potential Pan-European/global roll-out. This can only be achieved when 
reference data is available. A qualitative inspection was implemented instead.  
 
As for the other layers, filtering improves significantly the look and feel by reducing noise. For the 
use intensity layer, a filter of 4 pixels in size was applied. All areas within the grassland mask where 
filtered, so that there is no patch for one of the two intensity classes smaller than 5 pixels in the end. 
Within small grassland patches, it might happen that e.g. 3 pixels are classified as extensive and 2 
are classified as intensive. In such cases, the filter would cause the class values to jump between 
classes with each filter iteration without getting a patch of 5 unique values. If so, it was filtered in 
favor of intensive use because most of the areas are used intensively in the demo site. In any case, 
the number of mowing events layer, which is the previous step to the binary extensive/intensive use 
decision, is available for consultation. This layer is also useful to check for natural grasslands if it is 
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assumed that the latter are present when no mowing events are detected at all. For this assumption 
to be more reliable, a longer time series (e.g., several years) should be considered.  
 
The figure below shows the test in Central of the grasslands use intensity in 2018. It can be observed 
that grasslands are extensively managed in Alpine regions whereas more intensively in valleys 
around settlements.  
 

Figure 3-100: Grassland use intensity in Central 2018. 

A further approach based on Kalman filtering has been tested. The development and validation of 
the proposed method is based on the previously mentioned INVEKOS Austria data set, which 
provides a thorough characterization of the agricultural use of land including the mowing 
frequencies of grassland. Two tiles (32TNT and 32TPT) of the Central demo site are partially covered, 
therefore a test site representing the intersection of the tile boundaries with the bounding rectangle 
of the INVEKOS layer has been defined.  
 
Sentinel-2 images for the respective tiles acquired from the relative orbits R065 and R022 have been 
downloaded in order to create a time series from March to November 2018. Images with a nominal 
cloud cover >85% according to the COPHUB metadata have been discarded. Both TOA (level L1C) 
and BOA (level L2A) versions of the images have been acquired. The L1C data is needed to compute 
cloud masks using the Fmask 4.0 tool.  

TRACKING WITH KALMAN F ILTER: 

A further approach based on Kalman filtering has been tested. The development and validation of 
the proposed method is based on the previously mentioned INVEKOS Austria data set, which 
provides a thorough characterization of the agricultural use of land including the mowing 
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frequencies of grassland. Two tiles (32TNT and 32TPT) of the Central demo site are partially covered, 
therefore a test site representing the intersection of the tile boundaries with the bounding rectangle 
of the INVEKOS layer has been defined.  
 
Sentinel-2 images for the respective tiles acquired from the relative orbits R065 and R022 have been 
downloaded in order to create a time series from March to November 2018. Images with a nominal 
cloud cover >85% according to the COPHUB metadata have been discarded in the first place. Both 
TOA (level L1C) and BOA (level L2A) versions of the images have been acquired. L1C images are 
required to compute cloud masks using the Fmask 4.0 tool, whereas the masked L2A images 
represent the input to the Tasseled Cap tracking algorithm previously outlined used to estimate the 
number of mowing events. Note that the algorithm does not require additional disk space to store 
intermediate results and the only required output is a single raster file specifying the estimated 
number of mowing events. The intensity classification depicted in Figure 3-102 has been derived 
from this result.  
 

 

Figure 3-101: Location of the test site in western Austria (Background © basemap.at) 

 
The INVEKOS dataset provides polygons delineating agricultural parcels. Each polygon features a 
class label according to its land use type. The following table lists all classes corresponding to 
grassland together with the summed area of the associated polygons. Three class labels explicitly 
state the number of expected mowing events, while for the remaining classes it needs to be 
assumed. The only class clearly corresponding to high mowing intensity is “Meadow (3 or more 
mowings)” which also represents more than 38% of the area within the test site. Two other classes 
are assumed to be mowed intensively, however they represent only a marginal portion of the total 
area and therefore have little weight. 
 
 
 
 
 
 
 
 
 
 

http://www.basemap.at/
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Table 3-54: INVEKOS grassland classes and associated area within the test site 

Class (translated) Original class label (in German) Area [ha] Area % 

Mountain meadow Bergmähder 1818.873 2.27% 

Pasture Dauerweide 2469.965 3.09% 

Meadow (1 mowing) Einmähdige Wiese 5382.739 6.72% 

Fodder grass Futtergräser 55.477 0.07% 

Fallow grassland Grünbrache 19.535 0.02% 

Fallow grassland Grünlandbrache 23.686 0.03% 

Pasture Hutweide 11607.86 14.50% 

Clover Kleegras 643.247 0.80% 

Meadow (3 or more mowings) Mähwiese/-weide drei und mehr Nutzungen 30487.732 38.08% 

Meadow (2 mowings) Mähwiese/-weide zwei Nutzungen 25106.346 31.36% 

Litter grass Streuwiese 2442.283 3.05% 

Sum  80057.743 100.00% 

Extensive mowing (0 - 2 times)    

Intensive mowing (>2 times)    

 

 

Figure 3-102: Mowing intensity map based on Tasseled Cap tracking (within INVEKOS grassland mask) 

In order the assess the result of the grassland mowing intensity mapping, the INVEKOS polygons are 

rasterized to 10m resolution with pixel values corresponding to the mowing intensity indicated by 

the class label. Figure 3-103 shows the agreement between map and reference layer. Positive 

agreement overweighs in many parts of the test site, but there are also quite large regions of 

predominant disagreement. The confusion matrix in  

Table 3-55 reports an overall agreement of 76.54% and indicates that intensively managed areas are 

underestimated. The illustrations of Figure 3-104 to Figure 3-108 document two conditions leading 

to differences between map and classification.  
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Figure 3-103: Agreement between the INVEKOS reference layer and the mowing intensity map. 

 

Table 3-55: Confusion matrix for the mowing intensity map 

Mowing intensity mapping 

using Kalman filter 

REFERENCE   

Extensive Intensive Total 
User 

Accuracy 

Confidence 

Interval 

PRODUCT 
Extensive 52.12% 14.54% 66.66% 78.19% 4.16% 

Intensive 8.92% 24.42% 33.34% 73.24% 6.36% 

  

Total 61.04% 38.96% 100% 

  Producer 

Accuracy 
85.39% 62.67% 

 

76.54% 
Overall 

Accuracy 

Confidence 

Interval 
3.04% 4.48% 

 

3.49% 
Confidence 

Interval 

 

0.49 Kappa 

0.82 F1-score 

0.67 F0-score 
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Figure 3-104: Detail analysis of an area with poor agreement between reference and map. Inspection of the 

available observations for sample pixels A and B (see Figure 3-105) indicates problems caused by data gaps.  

 

Figure 3-105: NIR time series of sample pixels A and B (see Figure 3-104). Two key observations required to 

detect mowing events are missing in series A, but not in B. 
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Figure 3-106: Analysis of an area with moderate agreement between reference and map. Inspection of the 

estimated state variables for sample pixels C and D (see Figure 3-107 and Figure 3-108) suggests that the 

reference could be wrong in this case. 

 

Figure 3-107: Estimated state variables of sample pixel C (see Figure 3-106). Greenness and Wetness 

patterns indicate three mowing events, which is in agreement with the reference.  
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Figure 3-108: Estimated state variables of sample pixel D (see Figure 3-106). Greenness and Wetness 

patterns indicate three mowing events similar to sample pixel C. However, the reference states extensive 

usage.  

Several concluding remarks can be made based on the presented results: 

 Mowing events can be detected from optical remote sensing time series with reasonable 
reliability if the observation density is given 

 If data from overlapping orbits is not available, the number of clear-sky observations can 
become critically low and a reliable detection of mowing events is unrealistic. 

 The statistical significance is influenced not only by the vectors’ magnitude, but also by the 
length of the time gap between consecutive observations. 

 Large gaps in the time series will result in a lower sensitivity of the detection method, 
because the algorithm has not enough information to distinguish between abrupt and 
gradual signal changes 

 

3.3.3.3.3 Demonstration site SOUTH-EAST 

In the demonstration site SOUTH-EAST benchmarking was only performed during phase 2 of the 
project. While the classifier, i.e. random forest, was fixed already after the tests made in phase 1, 
benchmarking was applied in terms of predictor set selection, that is, S1, S2 and S1+S2, and feature 
selection.  

REFERENCE DATA 

For the testing the grassland classification in the SOUTH-EAST site, the LUCAS 2018 points were used 
as trainings samples. In total 3871 LUCAS samples were available in the demonstration site, of which 
743 belonged to the grassland classes. LUCAS data were filtered by identical criteria to the 
demonstration site WEST lined out in Table 3-41. After filtering, 2168 LUCAS samples remained (482 
grassland samples), of which 25% were set-aside for internal validation. The LUCAS land-cover 
classes were then converted into binary form, that is, “grassland” and “non-grassland”.  

MAPPING ALGORITHM: 

The number of trees in the random forest was set to 1000, although performance did already 
stabilize at around 500 trees in most cases. The number of predictors to evaluate per split was set to 
the square root of the total number of predictors, which is the recommended default value for 
discrete responses. Initial attempts at tuning this parameter did not improve the results and were 
therefore not pursued further. 
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FEATURE DEFINITION: 
 
From the S2 Level-2A data the following spectral indices were calculated for each acquisition date: 
NDVI, GNDVI, NDWI, NDRE1, NDRE2, MSAVI2, mean SWIR; IRECI, CI_red_edge, PSRI, REP and MCARI, 
Tasselled Cap Brightness, Tasselled Cap Wetness and Tasselled Cap Greenness. From the S-1 data 
gamma naught backscatter values were used.   
 
Based on the single-date spectral bands, spectral indices and backscatter coefficients a suite of 
multi-temporal metrics were derived for relevant time-periods throughout the vegetation period. 
The statistics derived were the 10%, 50% (median) and 90% percentiles, the mean, the standard-
deviation as well as the coefficient of variation. The aggregation time-periods which were chosen 
were: 

 March – October for capturing the yearly characteristics during the vegetation period;  

 Bi-monthly intervals: March – April, May – June, July – August and September – October; 

 Tri-monthly intervals March – May, June – August and September – October. 
 

FEATURE SELECTION: 
Feature selection was accomplished by backwards feature selection. Overall, 1200 Sentinel-2 and 66 
Sentinel-1-based time-series predictors were tested, resulting in a total number of 1266 potential 
predictors. Based on this pool of potential predictors the random forest Gini-based feature 
importance was used in a backward, element-wise feature selection procedure. For S1 the optimal 
set comprised 24 predictors, for S2 optimal performance was achieved with 39 predictors. The 
performance of the combined S1/S2 model was superior throughout and peaked at 36 predictors. 
 

 

Figure 3-109: Development of out-of-bag grassland F1 score during Gini-based backward feature selection 

for the predictor sets: Sentinel-1 (S1), Sentinel-2 (S2) and combined features (S1/S2). 

The observation that model performance increased with a decreasing number of predictors (Figure 

3-109) is an indication of a sample size limitation. Even though the random forest algorithm is to a 

large degree robust to very high-dimensional feature spaces, this behaviour shows that it is likely 

that an improvement could have been possible had more training samples been available.  

While there is a high variability in the ranking of the feature importance due to their extreme co-

linearity, some insights can be gained from identifying features which were selected both in 2017 
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and 2018. Table 3-56 shows this comparison. From the optical data, primarily S-2 Band 3 (red) and S-

2 Band 11 (SWIR) played an important role, as well as the red-edge position quantified by the REP 

spectral index, which locates the red-edge inflection point and is for the first time available 

operationally and in high-spatial resolution due to the S-2 mission. In both years 2017 and 2018 

further vegetation indices played a role, but due to their high correlation the were not stable in their 

importance and could be handled interchangeably between years. The S-1 SAR features were much 

more stable in their relative importance in both years, which is likely due to their more consistent 

time-series, which are barely influenced by cloudcover and illumination effects. Notably primarily 

mean and high-quantile backscatter of both VV and VH over selected time-periods turned out to be 

important in both years, while standard deviation as a measure of dispersion was not frequently 

found to be important. 

Table 3-56: Important variables identified for Grassland status layer production in demonstration site South-

East in both years, 2017 and 2018 for the combination of S1+S2 features. Temporal statistics: q10 = 10% 

percentile, q50 = 50% percentile (median), q90 = 90% percentile, sd = standard deviation, cv = coefficient of 

variation. TC green = tasselled cap greenness component, TC wet = tasselled cap wetness component. 

Type Variable 
Time period 

(months) 
Statistic 

S2, spectral band Band 3 03-10 q10 

S2, spectral band Band 5 03-10 q10 

S2, spectral band Band 11 09-10 q10 

S2, spectral band Band 11 09-10 q50 

S2, spectral index REP 03-10 q90 

S2, spectral index REP 05-06 q90 

S2, spectral index REP 05-06 sd 

S1, gamma naught VH 03-04 q90 

S1, gamma naught VH 03-10 q90 

S1, gamma naught VH 06-08 q90 

S1, gamma naught VV 03-05 q90 

S1, gamma naught VV 03-05 mean 

S1, gamma naught VV 03-10 q90 

S1, gamma naught VV 03-10 mean 

S1, gamma naught VV 07-08 mean 

 

PERFORMANCE BENCHMARKING S1, S2, S1+S2 
Benchmarking the predictor input sets was accomplished based on the test-set set aside before 
feature selection. The test-set benchmarks for the years 2017 and 2018 are shown in Table 3-57 and 
Table 3-58, respectively. In all cases, model performance of S-2 was superior to using S-1 only, 
however model performance was highest when using both S-1 and S-2 input features. This means 
that on the one hand there is a notable amount of overlapping information contained in S-1 and S-2 
data, however, there is also complementary information, which is essential to achieving the highest 
possible performance. While processing both S-1 and S-2 data for a potential pan-European roll-out, 
certainly entails a non-negligible processing overhead, these results demonstrate the added value of 
doing so. 
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Table 3-57: Test-set count based accuracy metrics (in %) for random forest based classification for 2017 

using S1, S2, and S1+S2 features. 

 

2017 S1 S2 S1+S2 

Producer Accuracy 41.79 49.23    54.72 

User Accuracy 60.85     68.06     68.24 

Overall Accuracy 81.46 82.80 83.87 

 

Table 3-58: Test-set count based accuracy metrics (in %) for random forest based classification for 2018 

using S1, S2, and S1+S2 features. 

2018 S1 S2 S1+S2 

Producer Accuracy 40.30 45.13 66.51 

User Accuracy 62.79     70.81 73.26 

Overall Accuracy 81.79    83.85 88.50 

 

3.3.3.4 Summary and conclusions 

The SAR2016 threshold based grassland classification is less accurate compared to the random forest 
approach, but it shows the potential of SAR data for the grassland classification. Due to fewer data 
sets in the growing season in 2016, the SAR2017 threshold based grassland classification shows 
better classification results than for the year 2016. This shows that the SAR threshold based 
grassland classification highly depends on dense time series. Furthermore, the used thresholds were 
derived based on 2017 data sets and transferred to 2016 dataset without adjustment.  
 
For all reference data sets, many misclassifications are at parcel borders with mixed pixels in the 
satellite imagery. Largest misclassifications occur for waterbodies (minimum threshold for annual 
SAR VV mean is too low), bare soil, and artificial surfaces which also feature low mean backscatter 
and little variance over time. These areas can however easily be removed with optical data (e.g. all 
features are characterized by very low NDVI values). 
 

As the results of Task 3 have shown, the synergetic use of temporal features derived from optical 
and SAR data streams enhances the accuracy of the classifications in comparison to either single 
optical or SAR only approaches. High-frequency optical and SAR acquisitions over the growing 
seasons were therefore used to derive temporal features over the grassland growing season as input 
for the classifications. The generation of suitable time features, especially considering upscaling to 
pan-European or global levels, is challenging and requires large computational capacities. 
Automated feature selection at the bio-geographic level is therefore applied, to reduce the 
computational effort for potential future operational large area roll-out. While attributing an 
absolute importance to each feature is not straight forward due to their high co-linearity, the ability 
to reduce the number of features which need to be computed beforehand without compromising 
mapping performance is the most important outcome. From the perspective of an operational 
implementation, a valuable observation is that the number of input features may remain moderate 
around at a maximum of 50 predictors. 
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Some commission errors have been detected in orchards and frequently occurring mixtures of 
grassland and shrubland. Cropland can be excluded from the layer with a higher reliability if the 
ploughing event is captured in the time series. If that is not the case, the crop areas share the similar 
spectral signatures with grass areas and cannot be excluded. The ploughing event is the main 
character to discriminate the grassland areas from crop areas. The grassland over detection due to 
missing ploughing events in the time series is the primary issue regarding the classification for 2017, 
where the time series is a lot sparser. Changing or abnormal environmental conditions between 
seasons also have an effect on the classification result. The drought period in summer 2018 resulted 
in a under detection of grassland areas as their spectral signature has been similar to some crop 
areas. Further, some misclassifications with fruit orchards remain as the grass cover between the 
orchards influences the spectral signature and the algorithm cannot separate them. Nevertheless, 
most of the orchards can be excluded using S1 and S2 depending on the tree size and management 
practices. It must be taken into account that no historical time series where included in the grassland 
classification process to detect ploughing events and exclude grassland younger than 5 years, 
therefore agricultural grassland is included in the status layer. Considering data availability and the 
not homogeneous data situation across Europe, another consideration towards larger area and 
constant production, is that the time period should not be too short, as otherwise results might not 
be meaningful due to the likeliness of limited number of scenes in some regions. Changing or 
abnormal environmental conditions between seasons also have an effect on the classification result. 
 

3.3.4 Agriculture 

The following subchapters comprise the testing and benchmarking of the time series classification 
methods for Agriculture, in the Central test site (Germany) and the Belgium site in Europe, plus the 
experiences in the African test sites.  
 
The central goal of this method testing is the generation of a potential future pan-European HRL on 
Agriculture, for which the specifications (e.g. variables, crop types, time intervals) are not yet 
defined (see AD05), and are up to the European Entrusted Entities (EEEs), the European Environment 
Agency (EEA) and the Joint Research Center (JRC). Some of the requirements related to agriculture 
layers have been compiled in WP21 [AD05].  
 
There are ongoing efforts towards a Sentinel-based “Monitoring” approach (JRC, 2016) as part of the 
subsidies control in the framework of the Common Agricultural Policy (CAP) of the European Union. 
Supporting the control is an important potential application requiring spatial crop type information. 
In such an operational monitoring application it is not sufficient to deliver a crop classification at the 
end of the crop growing cycle. Instead, intermediate classifications have to be available during the 
season, with iterative updates improving the results throughout the year. Then, the crop type map 
can potentially increase the efficiency of the subsidy controls, where the reported crop types of the 
farmers are verified by on-site inspections. Copernicus core services, such as an Agricultural Service, 
could bring added value and be integrated into downstream services, such as CAP. The interest in 
this topic was tackled in the CLMS H2020 sister projects second meeting in Spain in April 2019, and 
the IACS Workshop event. ECoLaSS experiences with the agriculture testing and prototypes were 
presented, and fruitful interactions with the other projects (e.g., SENSAGRI, SEN4CAP) benefited the 
developments in phase 2. WP41, WP44 and WP33 implementations embed this trend and 
requirements compiled in WP21 for the agriculture products in ECoLaSS.  
 
To summarize, ECoLaSS aims at deriving methods for a potential future HRL Agriculture that 
additionally could provide information on a yearly basis to be used as additional input to CAP, if 
desired.  
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Due to the differences between the biogeographic regions, and the need of adopting case-wise 
approaches and WP33 targeting methods compendia, the subsection on Agriculture, is structured 
differently. Within, section 3.3.4.1 describes the tests carried out in the Central test site in 
Germany/Austria, section 3.3.4.2 describes testing carried out in the Belgium site and section 3.3.4.3 
compiles the experiences in the tests developed in the African sites.  

3.3.4.1 Central test site – Germany 

The potential of time series analysis for crop mask extraction and crop type monitoring via 
automated, supervised classification was examined in a variety of data-scenarios in the ECoLaSS 
Central test site located in Baden-Wuerttemberg, Germany. The following chapters describe and 
discuss the results that were achieved with a selection of reasonable data configurations.   
 

3.3.4.1.1 Description of candidate methods 

As described in the first three paragraphs of Section 3.1, one of the most important components of 
large-area land cover classification are the predictors or (time) features. These can be derived from 
different time series, such as S1 or S Sentinel-1 or Sentinel-2 time series data. Furthermore, the 
features from both sensors can be combined. From a cost/benefit perspective, benefit arises mainly 
from higher product qualities (i.e. a higher accuracy of the produced map) while the amount of 
required processing is a matter of expense. The main purpose of the investigations presented in this 
section (3.2.4) is to investigate the suitability of the different datasets (Sentinel-1, Sentinel-2, and 
Sentinel-1 & Sentinel-2), different time windows and different feature sets.  
 
Particularly, using temporal-spectral features of Sentinel-2 and Sentinel-1 data (as described in 
chapter 3.1.4.1), multiple input data periods and configurations (pixel/field based) are evaluated 
with respect to the classification. Particularly, the following research questions were analyzed for 
the Central Site:  
 

- accuracies to be achieved for the crop mask and the crop types classification based on input 
data from S-1, S-2 and the combination of the two (phase 1 + 2),  

- improvements and performances of the crop types classification by selecting a suitable crop 
type structure (phase 1 + 2) , aggregating the results on field basis (phase 1 only),  

- optimization of a number of features with respect to the full feature set without a significant 
accuracy decrease (phase 1 + 2),  

- effect of data and features from the late season of the previous years over crop types 
accuracies (phase 1 only),  

- how well the crops can be classified during the growing period (phase 1 + 2), and  
- whether it is possible to provide comprehensive information that enables users to assess the 

reliability of a prediction (focus of phase 1).  
 
These questions have important implications with respect to the suggested input dataset selection 
and workflow definitions. For example, if the combination of features of both sensors does not 
improve the accuracy significantly, it is obviously preferable not to pre-process both Sentinel-1 and 
Sentinel-2. Also, if the pixel results are similar to the field based results, then a pixel classification is 
sufficient and the additional processing cost of a segmentation could be saved. This was assessed in 
phase 1. It is important to stress, that no segmentation of the image data was performed. However, 
the crop type reference data was at least partially available on parcel level. Thus, it was possible to 
aggregate the pixel-based classification outcomes per parcel in order to derive one prediction per 
parcel. Of course, the outcome of this procedure cannot be compared directly to the outcome of a 
segment-based classification in the sense that the quality of the derived segments would be less 
optimal compared to the parcels in many cases. However, the results derived by the parcel-based 
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aggregation can serve as a proxy to results that could be possible with a segmentation-based 
classification and are thus useful for focusing future research resources. 
 

3.3.4.1.2 Benchmarking criteria 

At first glance, the approach with the optimum cost-benefit ratio is preferable. Cost factors can be 
manual labor, data availability, processing load and other sensor and scenario specific data 
properties, advantages and problems. The trade-off between optimal accuracies and low cost is 
always application dependent. To give a comprehensive impression of the different experiments and 
possible outcomes, these criteria are reported as well.   
 

3.3.4.1.3 Implementation and results of benchmarking 

CLASSIFICATION INPUT DATA 

In phase 1, the area of interest consists of two Sentinel-2 tiles (ECoLaSS Central test site, Baden-
Wuerttemberg, Germany) out of the nine tiles of the demonstration site. Sentinel-2 and Sentinel-1 
data from October 2016 to November 2017 were downloaded and pre-processed for the two 
Sentinel-2 tiles T32UNV and T32UNU (Table 3-59). The number of available scenes for each tile is 
shown in Table 3-59.   
 
In phase 2, the test sites are located in the tiles 32UNU and 32TNT, for which the Sentinel-1 and 
Sentinel2 time series of the vegetation period starting from Mid-March 2018 to Mid-October 2018 
were downloaded and preprocessed. The autumn and winter season of the previous year is not 
included anymore because testing in phase 1 revealed only little benefit. Instead, the approach of 
phase 2 focused on the main vegetation period during spring and autumn. Taking into account the 
highly heterogeneous growing periods of the different crops, the classification approach tried to 
cover the whole growing period starting in Mid-March and ending up in Mid-October where EO 
imagery offers most information on spectral characteristics and texture, basing on varying 
phenology and biophysical aspects. The respective number of available scenes for each tile is shown 
in Table 3-60.   
 

Table 3-59: Phase 1 - Number of Sentinel-2 (< 50% Cloud cover) and Sentinel-1 scenes for the period October 

2016 - December 2017. 

  32UNU 32UNV 

Sentinel-1 46 46 

Sentinel-2 38 39 

 

 

Table 3-60: Phase 2 - Number of Sentinel-2 (<90% Cloud cover) and Sentinel_1 scenes for the growing period 

Mid-March 2018 to Mid-October 2019 

  32UNU 32TNT 

Sentinel-1 151 87 

Sentinel-2 139 98 

 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 216| Issue/Rev.: 2.0 

 

In both phases, the Sentinel-2 imagery was atmospherically corrected and topographically 
normalized using the ESA Sen2Cor software [AD07]. Since in 2018 the cloud cover was generally 
high, imagery with cloud cover up to 90% was used for classification and analysis in order to get time 
series as dense as possible. The cloud cover metric does not rely on the official metadata cloud value 
provided by the original Sentinel-2A product, but is derived from the Scene Classification Layer 
produced by Sen2Cor. As an additional consequence of the high cloud cover throughout 2018 and 
caused by the product tiling of the Sentinel-2 data, the number of available scenes per tile varies and 
ends up in differing density of imagery for classification especially in the northern tile of the test site 
compared to the Southern one. This fact is represented by differing Data Score Layer of the 
neighboring tiles. This issue has been observed in both testing phases of the project( Phase 1: Figure 
3-110, Phase 2: Figure 3-111). 
 

 

Figure 3-110: Phase 1 - Sentinel-2 data score (inverted cloud value count) for ECoLaSS central test site 

(T32UNU+32UNV tiles) for the time period March-Nov 2017. 

 
 

 

Figure 3-111: Phase 2 - Sentinel-2 data score (inverted cloud value count) for ECoLaSS central test site (left: 

whole demo site, right: test site T32UNU/TNT tiles) for the time period Mid-March – Mid-Oct 2018. 

 
The Sentinel-1 Ground Range Detected (GRD) data (VV and VH polarization) were pre-processed to 
Gamma0 values and a multi-temporal filter was applied on the time series (further details are found 

Data Score Layer:  
Data availability for Sentinel-2 imagery 
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in [AD07]. The pre-processing was done using the ESA SNAP toolbox. In contrast to phase 1, in phase 
2, both ascending orbit 15 and descending orbit 168 with a minimum tile coverage of 20% (referring 
to Sentinel-2-tile) have been used to get a denser time series.  
 
Figure 3-112 describes the monthly data availability of Sentinel-2 and Sentinel-1 data for the two 
test tiles in phase 1. The amount of scenes is calculated for the whole test site, meaning that data 
from the two Sentinel-2 tiles were included with a cloud cover of < 50% including an intentional data 
gap between December 2016 and March. The low amount of Sentinel-1 scenes from 2016 is caused 
by the limited availability of Sentinel-1B data (in completion to Sentinel-1A). This also applies for the 
Sentinel-2 data, since Sentinel-2B data is only available starting from July 2017, meaning that there is 
a limited availability of Sentinel-2 scenes from October 2016 to June 2017.  
 

 

Figure 3-112: Phase 1 - Imagery used in phase 1: monthly data availability for the two test tiles of Sentinel-1 

(left) and Sentinel-2 (right) with cloud cover <50%. 

The winter season has been left out due to the fact that in most middle European regions snow and 
ice cover as well as low temperatures induce a vegetation rest, providing only little information 
suitable for crop area and crop type identification. However, the autumn season of the previous year 
has been included in order both compensate the data scarcity of the 2017 year and to capture the 
extended vegetation period of some crops and also the resting period. 
 
As an outcome of phase 1, the late autumn’s period isn’t included anymore: testing revealed only 
little benefit in doing so. Instead, the approach of phase 2 focused on the main vegetation period 
during spring and autumn where plants show highest vitality. Taking into account the highly 
heterogeneous growing periods of the different crops – plus the shifts in sprouting, growing, 
vegetation peaks and withering of winter vs, summer cereals -, the classification tried to cover the 
whole growing period starting in Mid-March and ending up in Mid-October. During this time 
window, EO imagery offers most information on spectral characteristics and texture, basing on 
varying phenology and biophysical aspects. 
 
Both Sentinel-1 A + B and Sentinel-2 A + B being fully operational, the available number of scenes 
has strongly increased in phase 2. However, the limiting factor in 2018 being the high cloud cover, 
the total number of Sentinel-1 imagery by far exceeds the total number of Sentinel-2 imagery (Figure 
3-115). 
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Figure 3-113: Phase 2 - Available imagery for S-1 and S-2: number of scenes per time window for the test site 

(32UNU + 32TNT) with cloud cover up to 90% (S-2 data) and minimum tile coverage of 20% (S-1) 

 
As the vegetation period strongly depends on temperature, precipitation and altitude within a 
certain region, the approach needs to be adapted. Differing conditions have been observed still in 
the small area of the test site and this applies all the more for other regions in the Pan-European 
perspective. Mediterranean regions for instance, which are characterized by predominantly 
temperate climates with rainy a mild winter months and drought events in summer, could benefit 
from using imagery from December to June whereas Northern regions, such as the Scandinavian 
areas might require a reduced period of April to September to get suitable information on crop 
vegetation. 

 TIME FEATURES 

 
For the crop mask and crop type classification, all time features described in 3.1.4 were calculated 
for the full time period (from March to November 2017, referred to as 201703m9 which stands for 
the start year and month and the total number of months comprised by the time period). 
Additionally, the simple time features mean and median of consecutive two-month periods (March 
and April 2017, May and June 2017, July and August 2017 and September and October 2017, 
referred to as 201703m2, 201705m2, etc.) were calculated in phase 1. Table 3-61 gives an overview 
of the number of features for the different sensors and periods. 
 

38

52

87

191

20
25

47

92

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

March-May May-July July - Oct March - Oct

Number of Sentinel imagery per time window 
for test site Central

S1 S2



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 219| Issue/Rev.: 2.0 

 

Table 3-61: Phase 1 - Overview of the number of features for the different sensor and period combinations 

in phase 1 

Sensor(s) 
Name 

Period 
 

Sentinel-1 Sentinel-2 Sentinel-
1&Sentinel-2 

201703m9 Mar-Nov 2017 60 63 123 

201703m2 Mar-April 2017 8 8 16 

201705m2 May-Jun 2017 8 8 16 

201707m2 Jul-Aug 2017 8 8 16 

201709m2 Sep-Oct 2017 8 8 16 

SUM  92 95 187 

 
 

 

Figure 3-114: Phase 1 - Exemplary selected time features from the Mar-Nov 2017 period (brightness 90th 

percentile, NDVI mean, NDWI 75th percentile) and an RGB composite of different two-month periods. 
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In phase 1 it was analyzed if it is useful to include data and features from the end of the previous 
year in the classification for a possible better differentiation of the winter crops. Therefore, the full 
time features for the period October 2016 to November 2017 (however without data from 
December-February) and the mean and median for October and November 2016 were additionally 
computed. Additional features are derived from the two month period (8 for S1 and S2 each) and 
from the complete period Oct 2016 to Nov 2017 (92 and 95 for S1 and S2 respectively). The two 
classification scenarios thus differ by the inclusion of the 2016 data in the feature sets. Table 3-62 
shows the number of features used in these two settings. 
 

Table 3-62: Phase 1 - Comparison of the number of features when excluding and including the October and 

November 2016 data. 

Sensor(s) Dataset Sentinel-1 Sentinel-2 Sentinel-1&Sentinel-2 

2016 excluded 92 95 187 

2016 included 160 166 326 

 
In order to analyse the growing season, the features were extracted by limiting the data availability 
to two specific due dates: in the mid-June Scenario all images acquired between March 1, 2017 to 
June 19, 2017 were considered. The end date is the preliminary cross checks deadline of farmers 
geospacial aid applications (GSAA). In the mid-July scenario all images acquired between March 1, 
2017 and July 15, 2017 were considered. The end date is the last day for the examination of crop 
diversification. Both dates are relevant for the subsidies control in the framework of the Common 
Agricultural Policy of the European Union. For the two shorter periods the same features as in case 
of 201703m9 where calculated but for the respective time interval only. The two-month period 
features were not considered in case they included scenes acquired after the respective end date. 
However, for the first short period scenario the same features as for 201705m2 were calculated but 
only with the data of the 6 weeks ranging from May 1, 2017 to the end date. 
 

Table 3-63: Phase 1 - Number of features available for specific time period data scenarios. 

Sensor(s) 
Period 

S1 S2 S1&S2 

Mid-June 76 79 155 

Mid-July 76 79 155 

Full Period 92 95 187 

 
Considering the experiences in the other tests sites and demos in phase 1, and also the outcomes in 
WP41, in phase 2 the time windows focused now on the growing season, since it turned out that 
within this time slot all relevant information on phenology, texture, crop vitality and development 
could be gathered. This is – as already mentioned – the case for the middle European conditions at 
the test site and has to be adapted in regions showing different climate conditions. Several tests 
were carried out for changing time windows: the early winter crop mapping and the sprouting of 
summer crops (15 March-14 May), the period when all crops are in place respectively growing and 
peak of vitality for most crops (15 May-14 July), the time for decrease in vitality, withering of crops 
and harvesting (15 July -14 Oct) and the extensions to cover the whole main growing season (15 
March-14 October) including the harvest period. The time windows definitely vary locally. The 
slightly changed time windows (mid-month instead of beginning of month and 3-months period 
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instead of 2-months period) derives from experiences from phase 1. Limited tine windows focusing 
on main vegetation phases are an ideal trade-off between maximum of information with minimum 
data input this should help to save processing time and costs but at the same time get high accuracy. 
 
A list of all calculated time features is given in Table 3-64 and Table 3-65, and an overview over the 
number of features created per period and sensor is given in Table 3-66 (notation as following: Mid-
March to Mid-May 2018 is referred to as 201803m2 which stands for the start year and month and 
the total number of months comprised by the time period).  

Table 3-64: Phase 2 - Overview over calculated features per band and index for Sentinel-1 
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Table 3-65: Phase 2 - Overview over calculated features per band and index for Sentinel-2 in phase 2 
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Table 3-66: Phase 2 - Total number of time features per sensor and per time period 

 
Sensor Name 

Period 
 

Sentinel-1 Sentinel-2 Sentinel-
1&Sentinel-2 

201803m3 Mid-March to Mid-May 2018 52 117 169 

201805m3 Mid-May to Mid-July 2018 52 117 169 

201807m4 Mid-July to Mid-Oct 2018 52 117 169 

201803m8 Mid-March to Mid-Oct 2018 52 117 169 

SUM  208 468 676 

 
Within the Central region, some differences appear due to altitude and micro climate characteristics. 
In this sense, stratification is recommended. The following images of some exemplarily selected time 
features point out the capability of the time feature approach to capture the changing vegetation 
cover in the selected growing phases. The benchmarking results of the research questions are based 
on these features.  
 

 

Figure 3-115: Phase 2- Exemplary selected time features from the Mid-March - Mid-Oct 2018 period 

(brightness 90th percentile, NDVI mean, NDWI 75th percentile) and an RGB composite of 3 different periods. 
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Feature Selection 
 
The bands and indices given in Table 3-64 and Table 3-65 could be seen as pool of information which 
is in general a very good and proven basis for vegetation classification and highly suitable for crop 
differentiation. However, the number of useful features and the ranking differs from region to 
region.  
Since the processing cost increases with the number of features it is desirable to reduce the number 
of features without sacrificing accuracy. A feature selection algorithm can be applied in the 
classification workflow as described above to serve this purpose. According to this workflow, a large 
set of features is generated for the training samples polygons. Basing on this information, a subset of 
most informative features can be selected for the final classification model. Only the selected 
features then need to be computed on the complete raster data. As for the method of selecting the 
most suitable features, two different methods have been tested in phase 1 respectively phase 2. A 
recursive feature selection (Guyon et al. 2002) was tested for selecting a subset of features for 
benchmarking in phase 1. This algorithm selects features by iteratively considering smaller and 
smaller sets of the most informative features. The feature ranking is based on the cross-validated 
accuracy derived only from the training data in order to keep the test data independent.  
 
The outcomes of phase 1 and the testing experiences in Task 3 for agriculture in Central contributed 
to the definition of the classification final parameters and confirmed suitable temporal windows and 
features that were performing best. In that regard, the Random Forest classification algorithm which 
is in use in the ECoLaSS project provides information about the importance of certain features for 
the respective classification. For agriculture and grasslands, and some of the forest products, the 
Grouped Forward Feature Selection method has been applied in phase 2. This feature selection 
method - adapted and embedded in the Random Forest classification process - is based on the 
sequential feature selector which is integrated in the machine learning package (python module 
scikit-learn in the machine learning extension MLxtend). It selects the most suitable time features by 
using the information input of the training samples, builds a classification model and provides a 
subset of features which then can be used for the roll-out classification process on the whole raster. 
 
The method involves reducing an initial d-dimensional feature space to a k-dimensional feature 
subspace where k < d. Generally, feature selection aims at two aspects: improving the computational 
efficiency and reducing the generalization error of the model by removing irrelevant features or 
noise. The sequential feature selector removes or adds one feature at the time based on the 
classifier performance until a feature subset of the desired size k is reached. The Recursive Feature 
Elimination, method might be less complex in a computational effort perspective, using the feature 
weight coefficients (e.g., linear models) or feature importance (tree-based algorithms) to eliminate 
features recursively. However, the advantage of the Forward Feature Selection is that it eliminates 
or adds features based on a user-defined classifier/regression performance metric. The algorithm 
finally results in a specific combination of the features guaranteeing the potentially highest accuracy 
and seems to be the ideal feature selection method for crop classification. The selected number of 
features still depends on the complexity of the classification aim and on the number of classes. As 
crop classification needs a lot of detailed input for an accurate classification, even the reduced 
number of best-off features is still high. 

REFERENCE SAMPLES  

 
In phase 1, LPIS data have been used as reference basis for both, Crop Mask and Crop Type Mask. In 
the test area, applications for EU subsidies have been submitted by local farmers for 123 different 
agricultural land use classes. By far, the largest proportion within the test site covers grassland which 
is not examined in the present analysis. For the study, only major crop types were identified and 
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grouped into several categories. Table 3-67 lists these relevant crops by category and number of 
available reference parcels.  
 

Table 3-67: Phase 1 - Overview of the type and number of reference parcels used for crop type classification. 

Crop code and crop name derived from LPIS 

 

 
While cereal production is dominated by winter crop types, there is also a large proportion of fields 
used for maize and agricultural grass cultivation (Figure 3-116 left). As for spring cereals, only barley 
shows a certain frequent occurrence. Mean parcel sizes range between 0.46 ha for potatoes which 
tend to be grown on rather small strips of land and 2.11 ha for winter rape fields (Figure 3-116 right).  
 

 

Figure 3-116: Phase 1- Frequency (left) and mean parcel size (right) of the reference samples used for crop 

type classification. 

 
For the training and evaluation of the crop type classifier, 2000 pixels were chosen randomly for 
each of the predefined crop categories. The initial split of the data into training- and test sets was 

Cropcode Category Abbreviation # of Parcels

115
Winter Wheat 

(Containing Winter Bread Wheat, Winter Spelt, Einkorn/Emmer Grain)
W-Wheat 2882

116 Spring Bread Wheat S-Wheat 29

121 Winter Rye W-Rye 56

131 Winter Barley W-Barley 1728

132 Spring Barley S-Barley 1360

143 Spring Oat S-Oat 475

156 Winter Triticale W-Triticale 859

210 Peas Peas 97

311 Winter Oilseed Rape W-Rapeseed 729

411 Maize Maize 2814

424
Agrarian Grassland

(Containing Clover, Grass-Clover, Alfalfa-Grass- & Clover Mix, Alfalfa)
Agr-Grass 1442

590 Fallow Fallow 266

602 Potatoes Potatoes 268
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based on the input geometries of the LPIS reference data (proportion = 7:3) to ensure unambiguous 
reference data. 

For the crop mask classification, additional reference samples that cover the basic land cover types 
were available from the HRL 2015 layer production. They were re-used to complete the crop-sample 
base (described above) to support the differentiation between non-crop and crop. The class 'forest' 
consists of coniferous and broadleaf forest samples, the class 'grassland' includes data from the 
above mentioned reference parcels as well as grassland samples of the HRL 2015 grassland layer 
production. Table 3-68 shows the number of samples for each class. Splitting the dataset into a 
training- and test set was also performed for the crop mask classification, meaning that approx. 70% 
were used for training and 30% for testing. 
 

Table 3-68: Phase 1 - Overview of the reference samples used for the crop mask classification. 

Class code Classname # of samples Source 

1 Forest 734 HRL 2015 

2 Crops 13719 Farmer’s Application 

3 Grassland 5801 Farmer’s Application, 
HRL Grassland 2015 

4 Urban areas 300 HRL 2015 

5 Waterbodies 163 HRL 2015 
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In phase 2, two different input data sets have been used: The reference data for the crop mask 
consist of LUCAS 2018 data for the crop classes and some non-crop classes, complemented by 
samples from the HR Layer 2015 (which includes partially data from 2017) covering the non-crop 
classes. It must be noted that LPIS dataset was not available in Switzerland nor in the Northern part 
of the Central region. As the number of cropland samples derived from LUCAS was still very low, 
additional manual samples have been added for certain classes such as orchards or vineyards. Table 
3-69 gives the LUCAS classes which have been used as basis for the sampling layer for the Crop 
Mask. 
 

Table 3-69: Phase 2 – Overview of the LUCAS classes that were used as sample base for classes grassland, 

forest, imperviousness and water bodies.  

Classes used for 
cropland samples 

GRA FOR IMD WaW 

B11 Common wheat 
B12 Durum wheat 
B13 Barley 
B14 Rye 
B15 Oats 
B16 Maize 
B17 Rice 
B18 Triticale 
B19 Other cereals 
B21 Potatoes 
B22 Sugar beet 
B23 Other root crops 
B31 Sunflower 
B32 Rape and turnip 

rape 
B33 Soya 
B35 Other fibre and 

oleaginous crops 
B36 Tobacco 
B37 Other non-

permanent 
industrial crops 

B41 Dry pulses 
B42 Tomatoes 
B43 Other fresh 

vegetables 
B44 Floriculture and 

ornamental 
plants 

B51 clover 
B52 lucerne 
B53 other 

leguminous+mix
ed fodder 

B70 Fruit trees 
B71 
B75 berries 

E10 Grassland with 
sparse tree/shrub 
cover 
E20 E10 Grassland 
without tree/shrub 
cover 
 

C10 broadleaved 
C20 Coniferous  
C21 spruce dominated 

coniferous 
woodland 

C31 spruce dominated 
mixed woodland 

C33 other mixed 
woodland 

CXX3 Alpine Forests 

A10 Roofed built-up 
areas 

A22 non built-up 
linear features 

 

G10 inland water 
bodies 

G20 inland running 
water 

 
 
Table 3-70 shows the number of samples for each class for the crop mask classification. Splitting the 
dataset into training- and test set was performed for crop mask and crop type classification, 
meaning that approx. 50% were used for training and 50% - after several test it turned out that this 
percentage showed the highest accuracy in phase 2 (different from phase 1 where the 70:30 
percentage showed best results). 
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Table 3-70: Phase 2 - Overview of the reference samples used for the crop mask classification 

Class code Classname # of samples Source 

0 broadleaved trees 1800 HRL 2015 
LUCAS2018 

0 coniferous trees 2583 HRL 2015 
LUCAS 2018 

0 imperviousess 1800 HRL 2015 
LUCAS 2018 

0 waterbodies 1206 HRL 2015 
LUCAS 2018 

0 grassland 1800 HRL 2015 
LUCAS 2018 

1 cropland 2664 LUCAS 2018 
Manual sampling 

 
 
The cropland area of the crop mask has to be as accurate and comprehensive as possible because it 
will be the basis for the crop type mask. In this sense, the quality of the sampling is essential: issues 
in the crop mask are propagated in the crop type map within the crops. One first conclusion is that it 
is very important that the crop mask accuracy is very high to achieve a satisfactory crop type map. 
The main difference between the Crop Mask and the Crop Type Mask in this respect is, that in 
general agriculturally used areas remain quite stable whereas at the same time the crop 
management on these areas is highly variable due to crop rotation in all farming managements 
systems. The sample base for the identification of cropland vs. Non-cropland therefore can be more 
general and tolerates impreciseness concerning crop type differentiation and lacking timeliness. In 
the end the information of cropland or non-cropland is needed and LUCAS data are very suitable for 
that purpose. In contrast, Crop Type mapping strongly depends on highly accurate reference data to 
provide accurate results. 
 
Even though the LUCAS data is not used for crop type differentiation due to the lack of detail, 
validity and timeliness in the attributes regarding the selected crop types for classification, the class 
structure of the crop type mask finally is oriented towards the LUCAS class structure (aiming at the 
potential of LUCAS data being a source of information available in most EEA countries in the future). 
The selected crop type structure comprises the most common crop types for the crop groups of 
winter and summer cereals, vegetables, dry pulses and legumes, industrial crops, root/tuber crops, 
fodder crops and permanent crops.  
 
From the test experiences, it became clear that it was necessary to add manual sampling for the 
crop mask because LUCAS points are insufficient partially for location, partially for not covering 
specific crop types or for not being representative for the actual crop type in the respective region 
[AD15]. Sample representatives for orchards and vineyards that are also mixed with grasslands and 
forest in not pure crop samples result in mixed pixels. Spectral unmixing could potentially be applied, 
although this was not explored further in order to not compromise cost-efficiency for larger areas 
developments. Instead, manual samples for those classes have been added which improved the 
classification but unfortunately hasn’t solved the issue. It was also proved that shape matters (e.g., 
trees in line that are not similar to other orchards with different patterns). In this case, the classifier 
is often not able to make reliable decisions and opts for grassland instead of orchards (omission 
error), which should not be part of the Crop Mask.  
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A known issue is that grassland, fodder crops/temporary grassland and crop types which by nature 
show also high percentage of grassland are difficult to differentiate and cause misclassifications. The 
confusion matrix of the Crop Type Mask gives more information about how grassland and crops mix 
with many other classes. One option could be to use a higher sampling weight for those classes 
which are highly affected by commissions caused by other crop types. Using the probabilities could 
be another potential solution for these issues as the underrepresented crop areas tend to show 
probabilities between 40-50%, whereas the classifier decides for a specific crop type starting with 
probabilities of 51%. Further tests will be needed to find out if this would be a legitimate option 
even for a larger region. 
 
Crop Type nomenclature 
 
The crop type nomenclature agreed upon for testing in phase 2, is partially based on the outcome 
from phase 1 tests and the demos implementation but also from an anew analysis of spectral 
characteristics, specific growing phases, phenology of plants and taking into account their 
distribution respectively significance within the region. The crop type nomenclature is a prototype 
that considers a potential Pan-European roll-out. As experienced in other projects dealing with crop 
type mapping, and as it is always the case in land cover classifications, hierarchy, definitions and 
nomenclature are not trivial matters. That is why the data model and standard definitions are so 
relevant for global mapping and for enabling product updates and comparisons. In particular, 
occurrence, phenology, vegetation period and farming system of crop types show high variability. 
Thus, a hierarchical legend is a good compromise to be able to define a common legend at larger 
scales (e.g., Pan-European level), while matching with local conditions in subsequent levels by class 
aggregation or disaggregation. The class structure in ECoLaSS takes into account the degree of 
prevalence and extent of the cultivated area for the specific crop type (e.g., considering the crops 
more representative in terms of surfaces in Europe, cross-checking with available LPIS and LUCAS 
datasets and other sources available), the potential of spectral separability (crop-specific, and 
directly linked to the workflows using EO time series data inputs), phenology and growing cycles. The 
class structure is oriented to some extent to the LUCAS land cover structure of vegetation with crop 
groups at the highest level, crop classes at the 2nd level and crop types at 3rd level. In the case of the 
Central demo site, rice and olive groves, though relevant at the Pan-European scale, are left out. This 
is an example on how the legend must be adapted in the end to the local conditions.  
 

 

Figure 3-117: Phase 2 - available LPIS data for the 2 test tiles 32UNU and 32TNT for 2018 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 229| Issue/Rev.: 2.0 

 

In contrast to phase 1, in phase 2 the class structure showed a higher number of crop types – 
oriented to the LUCAS class system and hierarchically structured to be customized to regional 
conditions (see Table 3-71). The higher number of classes is part of the lessons learned in phase 1 
where it became clear that a classification of single crops and a later aggregation to crop groups 
would provide better classification results. 
The LUCAS survey identified certain crop groups and crop classes which are supposed to be relevant 
in all European countries. As these crop groups and crop classes are part of the Pan-European survey 
and proved to work under different conditions in many European regions, it makes highly sense to 
keep these crop groups and - as far as possible - also the crop classes for the crop type classification. 
The idea is to then summarize characteristic regional crop types under these crop classes referring to 
as regional adaptation. 
 
Samples for the crop types consist of sample extraction from LPIS data from Baden Württemberg 
and InVeKoS data from Austria (referring to the test site tiles 32TNT and 32UNU). They have been 
customized to the crop class/crop type structure implemented in phase 2 which means that only 
distinct samples which are representative for a crop type, have been chosen. Aiming at a sufficient 
sample basis for the high number of crop type classes, 250 polygons (if available) have been 
randomly chosen as input for the Feature selection, the model building and the subsequent 
classification. Some crop types have been declared as substantial for the class structure but are 
rarely cultivated within the test site, therefore less than 250 polygons have been available. This is 
the case for class 4-winter oats, class 7-summer rye and class 13-legumes.   
 
The hierarchical structure of fixed crop groups on the first level, largely fixed crop classes on the 
second level and regionally varying crop types which has been developed in phase 2 for the crop 
type mapping could be seen in the following table: 



D8.2 – D33.1b Time Series Analysis for Thematic Classification  Date: 18.12.2019 
ECoLaSS – Horizon 2020    |Page 230|       Issue/Rev.: 2.0 

  

Table 3-71: Phase 2 - ECoLaSS crop type nomenclature in phase 2 revealing the hierarchical structure to be customized to regional or local characteristics. 
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A class structure with a number of classes of this range seems reasonable for Central. It is quite generic 
in view of a homogeneous pan-European crop type map production, while at the same time reflects the 
regional situation on the test site. Tricky crop groups identified from the tests are Crop Group 2- 
vegetables, dry pulses, legumes as well as partially Crop Group 4-industrial crops (especially the crop 
class 44 – Other oleaginous fibre, biofuel, and beverage crops). These groups are characterized by small 
parcels, locally heterogeneous phenology and local occurrence) which is verified in the demo site as well. 
Our findings suggest that it is very important that the reference data structure is aligned to phenology 
and spectral characteristics in order to make it possible to distinguish between crop types in the region. 
Season peaks and indicators must be homogeneous within one crop group. Taking this into account, 
dubious samples must be left out which reduces the number of suitable samples. Another issue when 
dealing with several databases is that consistency and definitions and nomenclature homogeneity are 
not guaranteed. Both issues could lead to either a highly reduced sample base and/or unwanted 
heterogeneity of samples within one crop class/crop type both of which is strongly affecting the accuracy 
of the subsequent classification. Without a Pan European standard concerning survey system and 
naming convention to name some, these issues cannot be solved. 
  
A specific issue is how to deal with minority classes (Table 3-71). Class 4-winter oats, 7-summer barley 
and 13-legumes show a very low number of parcels and at the same time very small parcels (Figure 
3-118), subsequently only a small number of samples could randomly be extracted. Since this caused 
misclassifications, they have been left out.  
 
One option to deal with minority classes could be to use the SMOTE approach in order to get a well-
balanced sampling set for classification, respectively to get a higher sampling base for underrepresented 
classes and thus to improve the accuracy for those crop types. The Synthetic Minority Over-sampling 
Technique, uses synthetically generated samples along the line joining the minority samples and its ‘k’ 
minority class farthest neighbors in order to obtain a relatively balanced dataset for higher accuracy of 
underrepresented classes. Another approach has been used here: instead of artificially increasing the 
sample set for very small classes, as it would be the case with SMOTE - which in fact are hardly 
represented in specific areas - those classes have been left out. In the test site these left-out classes of 4-
winter oats, 7-summer barley and 13-legumes with very low number of and at the same time very small 
parcel sizes. Polygons under 1 ha have therefore been left out to limit unclear information caused by 
spectrally mixed pixels. 
 
 

https://arxiv.org/pdf/1106.1813.pdf
https://arxiv.org/pdf/1106.1813.pdf
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Figure 3-118: Number of parcels per crop Type and total area per Crop Type in ha, indicating the average parcel 

size as well as the degree of representation within the test site 

 
 
This approach is consistent, since the classes rice and olive groves are left out as well where they do not 
occur. This, in fact, is a very fundamental issue, since there will be hardly any crop type that occurs in 
every European country. 
 
However, it must be said that the low number of samples is not the only determining aspect for keeping 
or leaving out crop types. Spectral characteristics, phenology and size of parcels should also be taken into 
account. Sunflowers for example show also a minor number of samples but are very distinct in spectral 
information and are cultivated in both, smaller and larger parcels (Figure 3-119). Thus, they can be well 
differentiated and detected. 
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Figure 3-119: Phase 2 - Maximum parcel size per Crop Type in ha; classes marked in red have been left out due to 

small parcel sizes, the green ones have been kept – they offer distinct spectral information and can be well 

classified. 

CLASSIFICATION AND RELIABILITY LAYERS 

A Random Forest Classifier was used for all classifications both for phase 1 and phase 2 due to its 
generally good performance and ease of use. Apart from the class predictions, the classifier also provides 
the output of (pseudo-) probabilities, i.e. the mean predicted class probabilities of the decision trees. 
From these probabilities it is possible to derive reliability information. Three layers are calculated in 
addition to the class predictions and individual class probabilities, although the largest probability is the 
one provided together with the prototypes delivered:  

 largest probability (maximum probability) 

 largest probability - second largest probability (breaking ties) (Luo et al. 2015) 

 entropy - c=[1, #Classes](pc log pc) Where the pc is the probability of class c 

The range of the first two layers is naturally between [0, 1], or, as in our case when multiplied by 100, [0, 
100]. Of the three layers, the ‘largest probability layer’ is least significant, but can eventually be useful in 
specific analyses when combined with the other layers. The breaking ties layer is based on the two 
highest class probabilities: Two samples may have the same largest probability, e.g. 60, but a differing 
second best probability, e.g. 40 in one case and 5 in another case. As a result, the breaking ties reliability 
is 20 and 55 respectively. The entropy layer is another reliability measure which takes into account the 
probabilities of all classes. Originally, the potential range of the entropy depends on the number of 
classes. In order to align the value interpretations of the entropy according to the other two reliability 
layers, the values are rescaled to the range [0,100]. Low values correspond to unreliable and high values 
to reliable predictions. 
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3.3.4.1.4 Classification Results and Validation 

 
In the first place, for the crop mask, the multi-sensor approach and the pixel/object level were assessed. 
In phase 1, the results were generated by using data from reference year 2017 plus data from autumn 
months of 2016, whereas in phase 2 an adequate time window of Mid-March to Mid-Oct 2018 has been 
chosen in order to cover all crucial growing stages of both winter and summer crops. In the Central site 
the classification accuracies based on Sentinel-1 data are significantly lower than the respective 
accuracies based on Sentinel-2 data (OA of 89.5% for Sentinel-1 vs. OA of 92.3% for Sentinel-2 on pixel 
level). This was the case in phase 1 and has been approved also in phase 2, as it is commonly the case in 
various agriculture studies elsewhere. The combination of the two sensors does not significantly improve 
the classification accuracy when compared with the accuracies using simply the Sentinel-2 data (Table 
3-72 and Figure 3-120). However, in order to get a sufficient time series density and due to the fact that 
optical data availability might be limited, the integration of Sentinel-1 imagery is strongly recommended. 
The contribution of SAR features will indeed play a crucial role in regions/time windows with very high 
cloud cover.  
 

Table 3-72: Phase 1 - Kappa Coefficient (K) and Overall Accuracy (OA) for the different crop mask experiment 

setups (Sentinel-1, Sentinel-2, and Sentinel-1 & Sentinel-2 on pixel and field level). 

  K * 100 K * 100 OA OA 

  pixel field pixel field 

Sentinel-1 68.1 78.8 89.5 89.3 

Sentinel-2 79.2 84.9 93.0 92.3 

Sentinel-1 & 
Sentinel-2 

80.4 85.2 93.9 92.6 

  

Figure 3-120: Phase 1 - Barplot of Kappa (K) and Overall Accuracy (OA) for the different experiment setups 

(Sentinel-1, Sentinel-2, Sentinel-1 & Sentinel-2 on field and pixel level). 

Since the reference data is available as polygons, it was possible to aggregate the results of the pixel 
classification on field level and perform an accuracy assessment on both pixel and field level, with fields 
being the sample unit. To do so, the mean class-probabilities per field were calculated. Then, the new 
class prediction and reliabilities were computed based on the aggregated probabilities. In case of all 
input data sets, the overall accuracies increase with the field size. This is an expected pattern due to, e.g., 
the presence of speckle, as for the SAR data, but happens also for optical data due to the naturally 
uneven growth of the crops on the field. This important finding indicates that - even if the real field 
polygons are not available, segmentation could be considered, all the more if optical data availability is 
not sufficient (due to high cloud cover) and SAR data must be used as primary data source.  
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Considering incremental updates, intra-seasonal monitoring (e.g., see WP41 and user requirements 
compiled in WP21), and an intended large scale production the pixel based approach is a good 
compromise. Further examples of field-based approaches are provided in other sites.  
 
Phase 2: 
Assessing the multi-sensor approach was still a focal point, and it has been confirmed, that for both, Crop 
Mask as well as Crop Type Mask, optical data are indispensable for high accuracies (Table 3-73 and 
Figure 3-121), however, the combined approach offers high potential of complementing the data base 
where high cloud cover limits the benefit of optical data. 

 

Table 3-73: Phase 2 – Crop Mask: Kappa Coefficient (K) and Overall Accuracy (OA) for the different experiment 

setups (Sentinel-1, Sentinel-2, and Sentinel-1 & Sentinel-2 (pixel level). 

  K*100 OA 

Sentinel-1 64,9 88,3 

Sentinel-2 80,8 94,4 

Sentinel-1 + & Sentinel-2 81,8 94,4 

 
 

 

Figure 3-121: Phase 2 – Crop Mask: Overall Accuracy (OA) and Kappa Coefficient (K) for the different experiment 

setups for Sentinel-1, Sentinel-2, Sentinel-1 & Sentinel-2 (pixel level). 

 
 
In phase 2, the pixel based approach is still kept for both products for the Central demo site, due to the 
satisfactory accuracies achieved on the one hand, and the optimal cost-efficiency in production on the 
other hand. Since the pixel level accuracies versus field level accuracies have already be analyzed in 
phase 1, this has been left out in phase 2.  
 
As already mentioned, crop mask and crop type classification have been produced with different input 
data in phase 2: LUCAS points for the crop mask, LPIS data for the crop types (however limited to a 
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constraint area of Baden-Wurttemberg and Austria for the test site). The main reason to use different 
input data in phase 2 was the generally limited availability of up-to-date LPIS data in a Pan-European 
context. Using LUCAS data could be a meaningful alternative for the production of a crop/non-crop layer, 
as LUCAS data provide large-scale coverage (except only few countries) and, contrary to the crop types, 
the basic crop areas remain quite stable and in general only show minor changes over short time 
periods. Potentially outdated sample points can – to a certain extent - be handled by the classifier due to 
its robustness. So, LUCAS data are a time and cost effective basis for a classification of crop/non-crop 
areas in larger or even Pan-European context.  
 
However, as for the crop type differentiation, the classifier strongly relies on detailed and up-to-date 
information on the type of crop as well as on its location. Therefore, this product still depends on correct 
and up to date information as well as on short-term availability. This indeed is the main limitation of a 
large-scale field approach for crop type mapping. The following statistics give an impression of the 
potential of both approaches if full availability would be possible. 
 

Table 3-74 (Phase1) and  

Table 3-75 (Phase2) give a summary of the results with regard to the processing cost, accuracy and 

other benchmarking criteria. The listed sensor and data specific problems could lead to misclassification 

effects or class confusion in the final classification raster. For example, the speckle noise of the Sentinel-1 

data can lead to strong 'salt and pepper' effects, which would require a preceding, time consuming 

segmentation to avoid this effect. Other problems are the partially inconsistent cloud and cloud shadow 

masks of the Sentinel-2 L2A data that are not always able to capture all of the clouds and cloud shadows 

[AD07], which leads also to misclassification in the final raster. These issues have been faced on both 

testing phases. 

 

Table 3-74: Phase 1 - Benchmarking criteria and specific problems of the different crop mask experiment setups. 

 Accuracy 
(K*100) 

Processing Cost Specific Problems 

Sentinel-1 
pixel level 

68,1 + Foreshortening, layover in strong relief, 
speckle 

Sentinel-2 
pixel level 

79,2 + Clouds/cloud shadows 

Sentinel-1 
&Sentinel-2 
pixel level 

80,4 ++ As in S1/S2 at pixel level; the strength 
of one sensor type can compensate for 
the weaknesses of the other and vice 

versa. 

Sentinel-1 
field level 

78,8 ++ Foreshortening, layover in strong relief, 
segmentation 

Sentinel-2 
field level 

84,9 ++ Clouds/cloud shadows, segmentation 

Sentinel-1& 
Sentinel-2 
field level 

85,2 ++++ As in S1/S2 at field level; the strength 
of one sensor type can compensate for 
the weaknesses of the other and vice 
versa.  
Segmentation 
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Table 3-75: Phase 2 - Benchmarking criteria and specific problems of the different experiment setups. 

  Accuracy 
cropmask 
(K*100) 

Processing Cost Specific issues 

Sentinel-1 
pixel level 

64,9 
 

+ Foreshortening, layover in strong 
relief, speckle  

Sentinel-2 
pixel level 

80,8 ++ Clouds/cloud shadows 

Sentinel-1& 
Sentinel-2 
pixel level 

81,8 ++ As in S1/S2; the strength of one 
sensor type can compensate for the 
weaknesses of the other and vice 
versa. 

 

Crop Type Mask in Phase 1 
The patterns of the crop type classification accuracies are similar to those of the crop mask (Table 3-76 
and Figure 3-122). In case of the pixel classifications the Sentinel-2 based classification 2017 yields better 
results than the Sentinel-1 based classification (Kappa*100: + 18.2) while the combination of the two 
sensors does not improve the Sentinel-2 based classification significantly (Kappa*100: + 2.6). As 
expected, the field-based accuracies are all significantly higher compared to the corresponding pixel-
based accuracies. For the Sentinel-2 based classification, Kappa*100 increases from 74 to 77.5 and for 
the Sentinel-1/Sentinel-2 based classification there is an increase of 1.9. In case of the Sentinel-1-based 
classification there is an improvement of Kappa*100 from 55.8 to 64.  
  

Table 3-76: Phase 1 - Kappa Coefficient (K) and Overall Accuracy (OA) for the different experiment setups 

(Sentinel-1, Sentinel-2, and Sentinel-1 & Sentinel-2 on pixel and field level). 

  K * 100 K * 100 OA OA 

  pixel field pixel field 

S1 55.8 64.0 61.3 68.5 

S2 74.0 77.5 77.8 80.6 

S1&S2 76.6 78.5 80.0 81.4 

  

 

Figure 3-122: Phase 1 - Barplot of Kappa (K) and Overall Accuracy (OA) for the different experiment setups. 
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 The class-wise F1-Scores (mean of User's and Producer's Accuracy) depicted in Figure 3-123 shows that 
maize and winter rapeseed, which account for respectively 21 % and 6 % of the parcels, can be classified 
with very high accuracies. Winter rapeseed can be classified almost as good with Sentinel-1 as with 
Sentinel-2 and the field level aggregation does not improve the classification accuracy importantly. In 
case of maize, the accuracy of the Sentinel-1 classification is also very high (with an F1 score of ca. 0.8) 
and the field based aggregation improves the classification importantly. Nevertheless, compared to 
Sentinel-1, for maize significantly higher accuracies can be achieved with Sentinel-2. In general, the 
accuracies of the cereals are not as high compared to rapeseed and maize. As expected, there is a higher 
confusion between cereal types belonging to the spring and winter group, respectively. Particularly, the 
confusion between winter wheat and winter triticale and between spring barley and spring oat is high. In 
general, some of the classes with a very small amount of fields present in the study site cannot be well 
separated, particularly not without the field level aggregation and/or sensor aggregation. This is 
particularly true for spring wheat (116), spring oat (143), peas (210), fallow (590) and potatoes (602). 
These classes are relatively rare in the study site as can be seen in the sample distributions of Table 3-67 
(section 3.3.4.1.3, Reference Samples). However, if such smaller classes play an important role for a 
given application, then sensor combination and segmentation should be considered for improving their 
accuracies. 

  

Figure 3-123. Phase 1 - Class-wise F1-Score (mean of User's and Producer's Accuracy) for field vs. pixel-based 

classifications, reference year 2017. 
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 Figure 3-124 shows the confusion matrix of the crop type classification on field level based on the 
combination of Sentinel-1 and Sentinel-2 time features. The ability of the different time features to 
separate between the 13 different crop types depends strongly on the similarity of the classes. For 
example, of the 882 actual samples for 115 - winter wheat, ca. 29% were misclassified, mainly as 156 - 
winter triticale. Vice versa, of the 252 available samples for winter triticale, approx. 17% were falsely 
assigned to the class winter wheat. And of the 421 actual reference samples for 132 - spring barley, 
approx. 28% were misclassified, mainly as 143 - spring oat. This shows that it was not possible to 
differentiate these highly similar classes with the calculated time features.  

 

Figure 3-124: Confusion Matrix of the crop type classification on field level based on the combination of Sentinel-

1 and Sentinel-2 time features. 

  
Figure 3-125 shows that the classification accuracies improve slightly when data and features from 2016 
(October and November) are included. It should be evaluated if the integration of the additional data 
(i.e., from 2016) is worth in terms of the trade-off between accuracy requirements on the one hand and 
costs with respect to data processing on the other hand. Due to the small improvement in accuracy, the 
conclusion is that it might not be worth to include 2016 data. Therefore, the following experiments were 
conducted with 2017 data only. 
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Figure 3-125: Barplot of Kappa (K) and Overall Accuracy (OA) for the different experiment setups. 

 

Given that there is no significant reduction in the accuracy, it is desirable to reduce the number of 
calculated features to reduce the processing cost. For the crop type classification, the recursive feature 
elimination returned an optimal set of 50 features from the almost 187 considered features in phase 1. 
As can be seen in the plot below, the cross-validation score saturates early and peaks at 50 features. 
Even though a close to the peak accuracy is already achieved earlier with ca. 25 features, the number of 
features at the absolute maximum was selected.  
 

 

Figure 3-126: Overall accuracy (OA) based on the cross-validated training samples dependent on the number of 

selected features. 

 
Based on the independent test data, it can be confirmed that the accuracies with the selected feature 
subset are similar to the ones achieved with the full feature set (Figure 3-127). As a consequence, there 
is a high potential to reduce the processing cost without reducing the accuracy by, firstly, computing all 
spectro-temporal features only based on the training data. After performing a suitable feature selection 
on the training data set, only the selected and most relevant features would then have to be calculated 
for the whole raster footprint. This was confirmed in phase 2.  
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Figure 3-127: Barplot of Kappa (K) and Overall Accuracy (OA) for the classification based on all features, and the 

50 selected features. 

 
In the mid-June scenario, where data is used from March 1, 2017 to June 19, 2017, the crop type 
classification accuracies are significantly lower than for the mid-July scenario, where data until July 19, 
2017 was used. This is true for all the sensor scenarios: Sentinel-1, Sentinel-2 and Sentinel-1 & Sentinel-2 
(Figure 3-128). Instead, the improvement of the classification accuracies between the mid-July and the 
full period scenario is only marginal. 

  

 

Figure 3-128: Kappa and Overall Accuracy on field level of the for the different experiment setups, particularly 

the three considered periods. 

Looking at the class-wise classification accuracies, Figure 3-129 shows some expectable patterns. For 
example, rapeseed (311) blossoms before the end of the mid-June period. If the blossoms are captured 
in the data, this class is easily separable very early in the growing period. This is however only valid for 
optical data and in fact it can be seen that the accuracies for rapeseed are very high for all three periods 
in case Sentinel-2 data is used. Instead, with Sentinel-1 data the accuracies improve. Maize (411) 
improves when later data (e.g. from July and from the rest of the year) is included. This is also expectable 
since maize is sowed and harvested late with respect to the other crop types. Nevertheless, it can 
already be classified relatively well in the mid-June period. The classes for agricultural grass (424), fallow 
(590) and potatoes (602) improve strongly especially when the data of the full period is used. This is 
particularly true for fallow which could be the case because there is no harvesting event. The 
development of the different cereal accuracies is not clear. This is probably because there is a high 
confusion between these classes.  
  



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 242| Issue/Rev.: 2.0 

    

 

Figure 3-129: Phase 1 - Class-wise field-level F1-Scores (mean of User's and Producer's Accuracy) for the different 

experiment setups, particularly the three considered periods. 

With respect to the corresponding probability layers, high classification reliabilities in the respective 
layers usually correspond to correct predictions. This information can be used to prioritize the subsidy 
claims from farmers. Fields where the reported crop type label agrees with a high classification reliability 
can be directly approved. In fact, such decision support systems have been already implemented locally 
(Serra et al., 2007) and are in line with the current trends of the EO Monitoring in support of the CAP 
policies and payment systems. On the other hand, a high reliability for a specific class that does not agree 
with the reported crop type is an indicator for a likely incorrect claim and can then be investigated in 
more detail.  
 
This can be observed in Figure 3-130 by the high separability of the reliability distributions, i.e. a high 
clustering of true predictions in the upper range of the reliability metric and of wrong predictions in the 
lower range of the reliability range. The more wrong predictions cluster in the lower reliability range, and 
correct predictions in the higher reliability range, the more informative is the reliability information since 
high reliabilities concur with high predictions. This is valid for both, the breakties and the entropy 
reliability. For crops, for which there is a high overlap between the two distributions (similar high values 
for correct and wrong predictions, the reliability is thus less informative.     
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Figure 3-130: Phase 1 - Distributions of the breaking ties and entropy reliabilities of wrong (blue, left) and correct 

(orange, right) predictions grouped by the predicted crop type. 

The following Figure 3-131 shows the final crop types map derived from the reference year 2017 data 
over the full test site. The four insets of an area close to Ulm (Merklingen) show (i) an RGB composite of 
the median NDVI layers of the three two-month periods as explained in section 3.2.4.3. (upper left), (ii) 
the crop mask (section 3.2.4.4.1) showing crop areas in white and masking out all other areas in black 
(upper right), (iii) the crop types with the all other areas masked out by the negative crop mask, and (iv) 
an RGB composite of the three reliability layers as explained in section 3.2.4.4.6: maximum probability, 
breaking ties and entropy.  
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Figure 3-131: Final crop types map with the crop mask overlaid over the two processed Sentinel-2 tiles (left). The 

insets show an RGB composite of the median NDVI layers of the three two-month periods (upper left), the crop 

mask (upper right), the crop types with the Crop Mask overlaid (lower left) and and RGB composite of th three 

reliability layers maximum, breaking ties and entropy. 

Figure 3-132 shows a selected area north of Ulm (Westerstetten) and presents a detailed view of the 
crop type classification for the 13 crops/groups of crops. In supplement to the crop mask, the HRL 2015 
Grassland layer is displayed, showing that the crop and grassland layers are complementary and could be 
well distinguished. A probability layer for the class winter wheat, as described in section 3.2.4.3 is 
visualized, showing that most of the fields classified as winter wheat (light blue) were classified with a 
very high probability and therefore have a high reliability. An example of the reliability layer ‘breaking 
ties’ as described in chapter 3.2.4.2 is displayed and explains that pixels with a high probability also have 
a relative high reliability to be classified as the right class. 
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Figure 3-132: Phase 1 Details - Top left: detailed view of the crop type classification for the 13 crops. Top right: 

crop mask classification together with the HRL 2015 Grassland layer. A good distinction between crops and 

grassland was achieved. Bottom right: Example of the reliability layer ‘breaking ties’ as described in chapter 

3.2.4.2. Bottom left: probability layer for the class winter wheat. 

 
Results of Crop Mask and Crop Type Mask in Phase 2 

The classification results in phase 2 largely confirm the findings of phase 1 in terms of the significance of 
the sensor: Sentinel-2 only leads to higher accuracies than Sentinel-1 only. This is confirmed for both, 
Crop Mask and Crop Type Mask (Table 3-77). Altogether the overall accuracy achieved for crop mask and 
crop type with 94 % and 86% respectively is very satisfying, even more when taking into account that 
both reference bases, the LUCAS data as well as the LPIS data have their limitations (see previous 
chapters). 
 

Table 3-77: Phase 2 - accuracies for Crop Mask compared to Crop Types at Pixel level and with different sensor 

experiments; strengths and weaknesses of all three experimental set ups 

 

OA K OA K Processing 
Cost 

Specific Problems 
Crop Mask Crop Mask Crop Type Crop Type 

S1 pixel 
level 

88,00% 0,64 73,00%  + 
Foreshortening, layover in 

strong relief, speckle 

S2 pixel 
level 

94,00% 
0,80 

82,00%  + Clouds/cloud shadows 

S1&S2 
pixel level 

94,00% 0,81 86,00%  ++ 

As in S1/S2 at pixel level; the 
strength of one sensor type can 
compensate for the weaknesses 

of the other and vice versa. 
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However, different to phase 1, the combination of the two sensors does in most cases improve the S2 
based classification. This is especially the case for the cereal classes, for peas+beans, and for lentils, 
where the combination of both sensors seem to develop their full potential () and show a remarkable 
increase of the F1Score. 
 

 

Figure 3-133: Phase 2 - F1 Score for all Crop Type classes: S1, S2 and combined approach S1 & S2 and the 

improvement of accuracies by using both sensors 

 
The class-wise F1-Scores (mean of User's and Producer's Accuracy) depicted in the figure above (Figure 
3-133) show that maize and winter wheat, summer barley and rape seed which account for 27.32%, 
21.38%, 6.51% respectively 5.24% of the whole crop area, can be classified with very high accuracies, but 
also other crop types with less percentage show similar accuracies. That indicates that the level of 
representation within the crop area might not be the only aspect for being well detected and 
differentiated.  
 
Instead, Parcel size seems to have a very high impact on the classification result, as shown in Figure 
3-134. It shows the maximum size of parcels per Crop Type which corresponds largely with an average 
size of parcels. LPIS data suggest a tendency to grow for example cereals, maize or rape seed on larger 
parcels whereas vegetables or lentils usually grow on smaller parcels. 
 
It was one of the aims in phase 2 testing to find out if and how various cereal types could be identified 
and differentiated from each other. The tests in phase 2 focused on the main cereal types in Central 
Europe, which are the groups of summer and winter cereals split into various cereal types. Wheat, 
barley, oats and rye can be found growing all over Europe and can be well detected with means of 
remote sensing. Further cereals such as spelt, emmer, kamut tend to be more grown than in the past but 
still play only regional roles.  
 

+3% 
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Figure 3-134: Phase 2 - Maximum size of parcels and F1-Score per Crop Type 

 
The fact that the chosen cereals (classes 1-8) show slightly lower accuracies in the classification 
compared to most other crop types such as oleaginous + fibre crops, peas + beans, soya, beet crops or 
fruit trees + berries is caused by the high similarity in terms of farming management (similar sowing and 
harvesting times), similarity in vegetation development and in their high similarity in phenology which 
leads also to difficulties in spectral differentiation.  
 
These two aspects – percentage of area covered by a crop type plus maximum parcel size are the main 
reasons for high accuracy in crop type classification. Limitations considering these aspects led to leaving 
put the classes winter oats and summer rye (low occurrence in the test site + small parcel size). However, 
the classes lentils and sunflowers indicate that a specific phenology and very distinct spectral 
characteristics could compensate those limitations and still lead to reasonable accuracies (Figure 3-134 
above and Figure 3-135 below).  
 
A detailed Crop Type classification aiming at high accuracy in differentiation therefore has to consider 
 

- a sufficient representation within the region marked by number of parcels and even more by size 
of parcels in order to get an adequate sample base 
 

- high homogeneity within the plants representing one crop type crop indicated by similarity in 
vegetation period, phenology and spectral characteristic 
 

- high differentiability between the Crop types indicated by differences in vegetation period, 
phenology and spectral characteristic. 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 248| Issue/Rev.: 2.0 

    

 

 

Figure 3-135: Phase 2 - Connection between percentage of area covered by each Crop Type and accuracy within 

the classification 

Despite high accuracies (see Figure 3-136), it can be seen that for some crops the confusion is high. 
Especially cereals are mixing up with each other. Further, vegetables and lentils, are mixed with several 
other classes. Also the classes of temporary grassland + fodder crops and wine growing show strong 
overlaps.  
 
In case of cereals, the reason is first and foremost the high similarity, already mentioned above. The 
reason for the mixing of vegetables and lentils with other crop classes might be caused by the small 
parcel size leading to limited number and quality of samples, but might also be caused by similarities in 
vegetation periods and phenology. As for the temporary grassland + fodder crops and wine growing, the 
heterogeneous land cover caused by grassland patches between the vines, lead to high commission 
errors for temporary grassland + fodder crops. That is also the case for class fruit trees + berries, 
depending on the growing status of the trees and the level of covering the (grassland) ground. 
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Figure 3-136: Phase 2 - Confusion matrix for Crop Type classification at Pixel level (PA indicated down left, UA 

down right) 

In phase 2, the approach of grouped Forward Feature Selection (FFS) led to a reduction of features from 
676 to 221 for the Crop Type Mask. The number is still very high but could be explained by the high 
number of classes and the necessity of collecting a broad range of information for a large variety of crops 
in an extended time window. In order to detect every necessary information for every time step for 
every crop type, only a broad ensemble of time features is able to provide suitable classification 
accuracies for 19 crop type classes. This fact is displayed the figure where the curve is not as steep as 
usual or as the curve for the crop/non-crop classification above (Figure 3-138) but achieves the 
saturation value at a later stage with a higher number of best-of time features (Figure 3-137).  
The ranking among all features depends upon the time window. Usually indices like NDVI and NDVVVH 
play an important role both by number and by ranking and have therefore been included in the feature 
settings. Also features like min, max and the percentiles have high impact on the classification and are 
therefore selected. However, the feature selection for the sensors differs. As for Sentinel-1, nearly all 
NDVVVH features accumulate with high numbers in the time window of Mid-May to Mid-July, whereas 
features of VV and VH predominate in all other time windows. For Sentinel-2 is different: NDVI features 
predominate during Mid-March to Mid-May, NDVI, NDWI and IRECI are highly ranked from Mid-May to 
Mid-July (also indicated by the high number of these features in the respective time windows), band 
features seem to be of importance in all time windows. As for the type of features: min, max, mean and 
percentages have proven to be always selected with high ranking for vegetation detection. Only the 
Ratios have been completely neglected by the FFS process and thus could be left out for further testing.  
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Figure 3-137: Phase 2 - Overall accuracy OA based on the cross-validated training samples dependent on the 

number of selected features for the Crop Type classification. The curve describes the saturation process where 

the slope is less steep than usual indicating that a higher number of time features is necessary for getting 

sufficient accuracies. 

 
 

 

Figure 3-138: Phase 2 - Overall accuracy OA based on the cross-validated training samples dependent on the 

number of selected features for the Crop Mask classification 

 
 
As the comparison of accuracies already implies (Figure 3-110Figure 3-133), the importance of Sentinel-2 
time features is significantly higher than that of Sentinel-1 time features (Table 3-78). It should be 
mentioned that the highest number of 39 Sentinel-1 features accumulate in the time window Mid-May 
to Mid-July followed by that of Mid-March to Mid-May, whereas the Sentinel-2 features of Mid-May to 
Mid-July show the highest number of 65 features followed by a still noteworthy high number for Mid-
March to Mid-July and same for Mid-July to Mid-October. This indicates on the one hand the high 
complementary potential the combined approach of sensors as well as the meaningfulness of the chosen 
time windows. The number of features for the overall period Mid-March to Mid-October is smaller but 
high enough to make it reasonable to add these information as additional value to the classification 
process. The F1 Score values for the combined approach for all crop types shows that for some crops like 
winter rye and lentils even a low F1 Score for Sentinel-1 improves the accuracy in a combined approach. 
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Table 3-78: Number of Time Features selected by the grouped Forward Feature Selection per sensor and per time 

window 

  S1 S2 

Mid-March to Mid-July 26 26 

Mid-May to Mid-July 39 65 

Mid-July to Mid-October 13 26 

Mid-March to Mid-October 13 13 

total 91 130 

 

In contrary to phase 1, no field level analysis has been conducted for the test site due to limited coverage 
with reference data. The available LPIS data cover only parts of Baden-Württemberg and Austria and 
thus only a constraint part of the two test tiles 32 TNT and 32UNU, why this analysis was done in other 
test sites. 
 
From the user’s perspective, the outcome on real field level and also the visualisation in field level might 
be more interesting than the pure pixel result. Thus, using geometries could not only improve the 
classification by providing majority results but will also correspond more to the real. This investigation 
however, has been part of the prototype analysis. 
 
Probability measures: 
The analysis of the probability layers of the crop type classification of phase 2 confirmed the findings of 
phase 1: high classification reliabilities in the respective layers usually correspond to correct predictions. 
However, it is not recommended to use this information for direct actions referring to subsidy policies, 
because the validity of the reliability layers is crop type dependent. Concerning well separable crop 
types, the reliability layers are informative with respect to the likelihood of a correct classification, such 
as maize or rape seed. For less separable crops (see confusion matrix) an application cannot be 
recommended. 
 
Results for the Crop Mask: 
The crop mask for test site 32UNU and 32TNT for 2018 (Figure 3-139) comes with an OA accuracy and 
Kappa indices of 88% and 0,.4 for Sentinel-1 approach, 94% and 0.80 for the Sentinel-2 approach, and 
94% and 0.81 for the combined approach (Sentinel-1 & Sentinel-2). 
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Figure 3-139: Phase 2 - Crop Mask for test site tiles 32TNT and 32UNU (left) and location of the test site within 

the border region of Germany, Switzerland and Austria (right) 

 

 

 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020  |Page 253| Issue/Rev.: 2.0 

    

 

Figure 3-140: Phase 2 - Detail of crop mask 2018 complemented by the grassland mask 2018.  

 

 

 

 

 

 
 
 
 

Figure 3-141: Phase 2 - surroundings by google Earth imagery in 2018: Laupheim, SW of Stuttgart, Baden-

Wurttemberg 
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Figure 3-142: Phase 2 - Part of the Crop Mask and Details for test site Central 

 
 

 
 

 

 
 

Detail of Crop Mask, displaying cropland and non-cropland Sentinel-2 imagery from 2018_05_07 (NIR-
SWIR-RED) 
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Time feature S2: S2_2018-05-15 TO 2018-07-14_CC90_ 
TC08__BRIGHTNESS__p075 
Non-vegetation areas such as water bodies and urban 
areas with low BRIGHTNESS values indicated in blue, 
vegetated areas showing higher values – added values for 
classification 

Time feature S1: S1_2018-05-15TO2018-07-14_CC00 
_TC02__VH__pdiff090010.tif 
Example for certain parcels showing higher values in the 
time window of Mid-May to Mid-July – added value for 
differentiation between crop and non-crop areas 

 

 

 

 
 

Probabilities of crop area (0-100): red indicating low 
probability values, green high probability values (non-
cropland in grey); homogeneous and high probability 
values indicate reliable classification of crop area 

Reliabilities of Crop area: still indicating high reliabilities 
for most of the parcels, but giving a more heterogeneous 
picture and illustrating the main issue in crop 
classification: the heterogeneous vegetation cover within 
crop parcels and on the borders of parcels 

 
 
The result for the Crop Mask for test site Central is shown above (Figure 3-139, Figure 3-140, Figure 
3-141, Figure 3-142). Details of the classification for an area South West of Stuttgart near Laupheim 
(Figure 3-139, indicated in red) are given in the following insets. The Sentinel-2 image from 2018_05_07 
(NIR-SWIR-RED) indicates parcels with vital vegetation in red but gives only the partial picture since other 
land cover such as water bodies, urban areas or trees are difficult to identify. Agricultural management 
systems, especially in Middle Europe leads to very heterogeneous land cover patterns from beginning of 
spring until End of October. In order to cover the agricultural area in comprehensive manner, it is 
necessary to collect information on tilling, growing, vegetation peaks and harvesting over the whole time 
period. The dense time series of Sentinel-1 and Sentinel-2 joins these information of the time features 
per time window, such as the Sentinel-2 feature displaying the BRIGHTNESS from Mid-May to Mid-July 
(S2_2018-05-15 TO 2018-07-14_CC90_ TC08__BRIGHTNESS__p075) or Sentinel-1 feature from the same 
time window (S1_2018-05-15TO2018-07-14_CC00 _TC02__VH__pdiff090010.tif) and at the same time 
supports differentiation from non-crop areas. The high probabilities for the crop area as well as the high 
reliability values verify the effectivity of the approach. 
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Results for the Crop Type Mask: 
The result for the Crop Type Mask for the test site Central 2018 comes with an OA of 73% and Kappa 

index 0.81 for the Sentinel-1 only approach, 82% and Kappa index 0.81 for the Sentinel-2 only approach 

and 86% with Kappa index of 0.85 for the combined approach of Sentinel-1 & Sentinel2. 

 

Figure 3-143: Phase 2 - Crop Type Mask for test site in tiles 32TNT and 32UNU (left) and location of the test site 

within the border region of Germany, Switzerland and Austria (right) 
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Figure 3-144: Phase 2: Part of the Crop Type Mask 2018 and Details for test site Central 32UNU and 32TNT 
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Probabilities (0-100) for class 9-maize:  
red indicating low probability values, green high values for 
the crop type of maize 

Probabilities (0-100) for class 16-rape seed: 
red indicating low probability values, green high values for 
the crop type of rape seed 

 

 
 

 

 
 

Probabilities (0-100) for class 11-peas+beans: 
red indicating low probability values, green high values for 
the crop type of peas+beans20 

Reliabilities for Crop Type mask 2018 for test site: non 
crop area in grey (already defined by crop mask), crop 
types indicating th respective reliability values. Highest 
reliability values (dark blue) often coincide with large 
parcels for classes 1-winter wheat, 2-winter barley or even 
smaller parcels for 16-rape seed;  
again, the heterogeneity of reliability values within parcels 
indicates heterogeneity of vegetation status and cover  

Figure 3-145: Phase 2 - Detail of Crop Type Mask with RGB of NDVI median TF for 3 time windows (March-May, 

may-July, July, Oct) 

A first run combining Sentinel-1 and Sentinel-2 data (using the same technical workflow as for the Crop 
Mask) provided an OA of 86% and Kappa index of 0.81. The good detection and differentiation of the 
different classes is promising. When considering the whole demo site, a regional stratification should be 
taken into account in order to cover the shifted vegetation period of the alpine region in comparison to 
the area in the North of the demo site. This approach could reduce overlaps between the crop 
mask/crop type mask (concerning classes agrarian/fodder grass) and the grassland mask as well as 
reducing the issue of mixed crop types. 
 
This method is only applicable for the larger area of the demo site as it is related to a better fit to 
differentiated local conditions that are not significant in the test area. This is one example where the 
across-scale approaches might differ, and that required being tackled in parallel in phase 2 between Task 
3 and Task 4 sub activities. With the provision of the LPIS data of Bavaria and the larger region, the 
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number of samples should be enough to work with this approach. One issue is the overlap of the 
grassland layer and the class agrarian/fodder grass of the Crop Layer, which is inevitable for a layer based 
on a one-year period, lacking the historic information of tilling in the previous years. Without a dense 
time series covering historical data, natural and permanent grassland cannot be distinguished from 
agrarian grassland and temporary grassland being ploughed regularly.  
 
The mono- and multi-sensory approach results for the crop mask and the crop type’s tests are shown in 
the graphics below (Figure 3-146 and Table 3-79).  
 

 

Figure 3-146: : Phase 2 - accuracies for the Crop Mask 2018 for the test site per experimental setup, S1 only, S2 

only and the combination of S1 & S2 

Table 3-79: Phase 2 - accuracies for the Crop Mask 2018 for the test site per experimental setup, S1 only, S2 only 

and the combination of S1 & S2 

 
K*100 OA 

Sentinel-1 64,90 88,30 

Sentinel-2 80,80 94,40 

Sentinel-1  
& Sentinel-2 

81,80 94,30 

 
 

The crop mask tests show that the classifications based on Sentinel-2 only data tend to show better 
results than those based on SAR features. In this case, the combination of Sentinel-1 & Sentinel-2 does 
not significantly improve the classification accuracy, when compared to the Sentinel-2-only approach.  
 
For the crop types map, the F1 scores for each crop type are shown in Figure 3-147 (grey bars for 
Sentinel-1 only classification, orange for Sentinel-2 only classification, and green for the combined 
classification). The corresponding overall accuracies and kappa indices are respectively 73% and 0.71 for 
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Sentinel-1 approach, 82% and 0.81 for the Sentinel-2 approach, and 086% and 0.85 for the combined 
approach (Sentinel-1 & Sentinel-2). F1 Scores for Sentinel-2 are higher, although for most classes, the 
combined approach provides the best accuracies. All in all, the overall accuracy for the combined 
approach is significantly higher than for each of the sensors on its own (see percentages in Figure 3-133 . 
Regarding the contribution of SAR features, when considering that in general Sentinel-2 features are 
usually preferred in agriculture land cover workflows, it must be noted that even if the cloud situation is 
not the best in 2018, there is a sufficient number of Sentinel-2 imagery for the tests carried out in the 
Central region. This means that the benefit of using Sentinel-1 imagery in the combined approach, might 
prove even higher in areas with very high/nearly permanent cloud cover.    
 

 

Figure 3-147: accuracies for the Crop Type Mask 2018 for the test site per experimental setup, Sentinel-1 only, 

Sentinel-2 only, and the combination of Sentinel-1 & Sentinel-2 

3.3.4.2 Belgium site 

In the following sections, the classification methods applied in the Belgium site are described. Details are 
given towards the methods (section 3.3.4.2.1) as well as the benchmarking criteria (section 3.3.4.2.2) and 
the implementation and results of the benchmarking procedure (section 3.3.4.2.3). 

3.3.4.2.1 Description of candidate methods 

A random forest classifier is used for automatic crop type map production. This method has been 
selected based on the state-of-the-art review from (Inglada et al., 2015). These crop features are not 
considered in the Belgian test site from this benchmark. This method is fully automated but requires in 
situ data for the training. 
 

3.3.4.2.2 Benchmarking criteria 

Overall accuracy and kappa are reported for all benchmark scenarios to assess respective classification 
performances. A F-score for crop types is also provided in particular where low occurrence classes were 
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evaluated. These metrics refer to the ECoLaSS accuracy assessment guidelines (section 2.4). The 
approach with the optimum cost-benefit ratio was not considered here as the cost factors did not vary 
much from one scenario to another. 
 

3.3.4.2.3 Implementation and results of benchmarking 

Classifications were performed on the Belgium test site for the period 2017 with the preprocessed 
Sentinel-2 images as our optical data source. Object-based in situ data were obtained from the SIGEC 
(Système intégré de gestion et de contrôles, Region Wallonia, Belgium). The area of interest is the 
Sentinel-2 tile 31UFR based on in situ data availability. 
 
The method used linearly temporally gap-filled images as inputs for the classifier. To assess the 
performance of the random forest classifier we used several distinct inputs.  
 
The classifier is performed on either Whittaker temporally gap-filled L2A images or L3A monthly 
composites. Mean composites and maximum NDVI composites for months with pixel coverage of 90 % or 
higher were used as inputs for the model. For 2017 only March, June, July, August, September and 
October were compliant. For each input, we extracted features for the model calibration: NDVI, NDWI 
and brightness in addition to the ten Sentinel-2 preprocessed bands. 
 
The validation was operated independently from the calibration by splitting the dataset before operating 
the classifier. We used 25 % of the in situ data for the validation. From the remaining 75 %, 20 % were 
used for the model training. The data were selected randomly while keeping the proportion of each 
distinct crop type identical to the full dataset. 
 
To improve the overall accuracy two scenarios for data calibration preparation were compared. The 
former is a Synthetic Minority Over-sampling Technique (SMOTE) operated on the training in situ data to 
increase the sample size of minority crop types. The method was used to increase the sample sizes up to 
one thousand per crop type when in situ data were below this threshold. The latter is the removal of 
pixels located on field borders which is particularly critical for agriculture due to the limited field size. We 
used a 15 meters buffer on the field objects to avoid border location errors as well as pixels values 
polluted by neighborhood land cover or mixels. 
 
Every classification scenario achieved an overall accuracy higher than 80% (Figure 3-148). The best 
results were obtained with the Whittaker temporally gap-filled L2A images as input and both SMOTE and 
mixel removal operations. Based on overall accuracy, results with SMOTE are not significantly different 
from random sample selection. Results from different inputs do not differ more than 1 % accuracy wise. 
Mixel removal improved accuracy by 4 to 5% in every scenario. 
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Figure 3-148: Overall accuracy for every classification scenario evaluated. 

 

 

Figure 3-149: Classification F-score for each crop type ID for Whittaker inputs with random sampling and mixel 

removal (red). Overall accuracy (blue) for classification and Kappa (green). Relative cumulated area of crop types 

(black). 
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Figure 3-150: Classification F-score for each crop type ID for Whittaker inputs with SMOTE and mixel removal 

(red). Overall accuracy (blue) for classification and Kappa (green). Relative cumulated area of crop types (black). 

 
To assess the performance improvement provided by the SMOTE method, classification errors on low 
occurrences classes must be evaluated. As seen in Figure 3-149, random sampling is not able to classify 
properly classes with small sample size in the in situ dataset. Figure 3-150 on the other hand shows that 
SMOTE method is useful to improve results for small occurrences classes. 
 

3.3.4.3 African site 

A classification approach similar to a scenario implemented for the Belgian site has been applied to three 
tiles of the Western Cape province in South-Africa for 2017 (Figure 3-151). The method used linearly 
temporally gap-filled Sentinel-2 images as inputs for the RF classifier. Only Sentinel-2 L1C images with a 
cloud cover below 90% and recorded from the 1st April to 30th November 2017 were calibrated and cloud 
screened by MAJA code. The pixels located at the field borders were discarded from the calibration 
dataset in order to reduce the mixels contribution. In addition, the parcels with a size lower than 0.5 ha 
were also excluded from the analysis.  
 
The in-situ dataset was made available by the Western Cape province and included 200 different crop 
types. These crop types have been grouped into 16 crop types including weeds and unknown crops. As 
reported in the Figure 3-152, the OA reaches 70 % and the wheat, the oilseeds and barley which are 
most frequent crops are mapped with a promising accuracy (F1-score higher than 0,75). On the other 
hand, the grasses, fallows and fodder crops are poorly discriminated while they cover large extent of the 
agricultural lands in these areas.  
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Figure 3-151: Location of the three benchmarking tiles for the South-African sites in the Western Cape province. 

 

Figure 3-152: Accuracy assessment of the crop type mapping in the South African site (3 tiles). 
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Figure 3-153: Number of parcels per crop Type and parcel area per Crop Type 

3.3.4.4 Summary and conclusions 

The crop mask and crop type mapping using Sentinel-1 and -2 time series have been addressed in three 
different biogeographic regions (Central, West and African test sites). This was performed by using the 
Random Forest algorithm which was applied on several time features extracted from time series from 
Sentinel-1, -2 and combined approaches. Based on the specifications for a potential future Copernicus 
HRL on agriculture, methods have developed and proposed. 
 
The tests presented in this study have also been applied on the larger prototyping sites of 6-9 Sentinel-2 
tiles in the framework of WP 44. In both phases, the aim was to cover the whole growing season, 
however the definition of growing phase differed. In phase 1 it was tested to use an extended time 
window including also autumn months of the previous year. In phase 2, the time windows selection was 
more constraint, focusing on a shortened vegetation period within one year, but covering the main 
events/changes per season: starting with sowing, then covering the heterogeneous phase of vegetation 
peaks for most of the crop types and extending to the harvest seasons. The test focus on the 
multisensory benchmarking and, considering the time features selection, by means of a pixel based 
approaches, is aiming at the best tradeoff between cost-efficiency and highly accurate results.  
 
The time interval algorithms are strongly affected by undetected clouds/cloud shadows as well as 
confusion with bright surfaces in the cloud mask. These algorithms present many artefacts and data gaps 
due to the short compositing period and the interval between images available in the time series. In 
phase 1, it was demonstrated that feature-based algorithms are more appropriate as they achieve more 
spatial consistency and very few data gaps thanks to the use of the entire time series as input. To avoid 
potential artefacts derived from the presence of unmasked cloud cover pixels, time periods were 
selected to guarantee a sufficient number of imagery to minimize the distortion that extreme values 
would pose to the statistics. In the West test site, it was proved that Whittaker temporally gap-filled L2A 
images provides better results than multiple monthly composites. The gap-filling process allow more 
features to be used in the classifier whereas composites still retains missing pixels from month to month.  
 
For the crop mask, the accuracies of the classifications based on S2 were significantly higher than those 
based on S1. The combined approach of S1 and S2 increases the accuracies of crop/non-crop 
classification only marginally. As a consequence, and in order to reduce the computational effort, the 
input data for the crop mask classification of the Central site (and similar regions) could be restricted to 
Sentinel-2 data. Of course, this finding is not transferable to areas with higher cloud probability, where 
the integration of S1 data is viable and promising. 
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Concerning pixel level versus field level approaches, the accuracy gain of the evaluation based on field 
level in phase 1, turned out to be much higher for S1 compared to the modest gains for S2. The strong 
increase in accuracy for the S1 based classifications on field level is expectable due to the reduction of 
the speckle effect. Despite the multi-temporal filtering carried out for Sentinel-1 data prior to the 
classification, this is still present in the pixel based result. Therefore, an object based classification could 
be particularly useful in case of S1 data, however it might be easier to derive the segments from the 
optical data.  
 
Even though the time feature approach is able to compensate to a certain extent implications of extreme 
values (caused by land cover or by technical issues) they still affect the classification. Undetected clouds 
and cloud shadows as well as bright surfaces cause confusions and have impact on the time interval 
algorithms. These algorithms then present artefacts and data gaps which strongly increase for very short 
time periods. This experience led to the extension of the time window from 2 to 3 months in phase 2, 
compared to phase 1, and was also the reason for adding of the time window for the whole vegetation 
period from Mid-March to Mid-Oct supplementary to the already chosen ones for spring, summer and 
autumn. In both phases it turned out that feature-based algorithms are appropriate as they achieve high 
spatial consistency and very few data gaps thanks to the use of the entire time series as input and thus 
are able to minimize these artefacts. Thus, the use of extended time periods in combination with the 
time feature approach is a means to reduce unwanted effects. 
 
Due to the high computational cost of the feature calculation for the whole raster, it has been 
investigated if the number of features can be reduced significantly without a significant loss of 
classification accuracy. The method of group based forward feature selection proved that the optimal 
accuracy can already be achieved by using a selection of best features (up to 25% of the initial feature 
set) in the tests for the Central site.  
The feature selection could be further optimized by considering feature groups. These groups should 
comprise features such that the computational cost of calculating an additional feature of a specific 
group is relatively low compared to the calculation of a feature from another group. For example, it is 
computationally less expensive to calculate 10 features for one layer (e.g. NDVI) than 5 features for each 
of two different layers (e.g. NDVI and NDWI). This is simply because in the first case only half of the data 
(one layer) needs to be loaded, and in case of the percentile calculation sorted. Thus, a group-based 
feature selection as it has been performed in phase 2, could further reduce the processing cost without 
loss of accuracy. 
 
As for the crop type mask, the tests in the Central site using the combined approach offers its full 
potential in joining the benefits of the S1 and those of the S2 time features. The ability of S1 time 
features to grasp texture and structure during the growing of the crops highly enhanced the crop type 
accuracy. Precondition is a suitable time window covering the whole vegetation period for the region to 
classify. Adaptions to regionally varying conditions should be done by stratification, taking biogeographic 
conditions like temperature, precipitation and altitude into account. This approach would minimize the 
confusion between crop types caused by shifted sowing and harvesting dates or shortened vegetation 
periods in areas with higher altitude. The focus of the stratification is the same than that of the crop type 
class nomenclature: homogeneous preconditions promote an accurate detection of the crop area 
respectively of the crop types and will lead to an accurate classification result. 
 
From the tests results, if was found that the classes with high occurrence and number of samples, tend 
to reach high accuracies, whereas classes with low occurrence, show low performances. However, 
although this must be taken into account, also other aspects have an impact on differentiating crop types 
from each other. Distinct spectral characteristics, phenology and beginning and end of growing phase are 
also very important for crop type detection and for differentiation between the crop types. This was 
shown in phase 1 already, and is confirmed in WP41 and WP44 in both phases. In some cases, (as for 
class 21 and 22 in Central), the small number of samples is not that crucial when comparing the F1 
scores.  
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The multisensory approach confirms the great performance of S2 for crop masking and crop types 
mapping. The combined S1+S2 tests provide the highest accuracies, although in case of the crop mask, 
the gain is marginal, not accounting for the factor that the benefits are increased when cloud conditions 
are worse. This might be the case proved in the benchmarking of the test for 2018 in Central in phase 2 
for the crop types mapping. In the end, the cloud conditions must also be considered because it affects 
the time series density, and accordingly the time windows selection. As explained in grasslands, selecting 
the key phenological periods can enhance cost-efficiency of production, although especially in 
agriculture, due to the relevance of the S2 features, the periods should not be too short, to reduce the 
risk of lack of a sufficient number of scenes or quality of the imagery in the time series. 
 

For the crop type classification an initial set of criteria to evaluate the best compositing method for crop 
detection and crop growth monitoring (CG) have been selected. The benchmark was performed on the 
test site Central (Germany/Switzerland/France) and test site WEST(Belgium) and showed promising 
accuracies as well as the high potential of time series and derived time features for crop mask extraction 
and crop type monitoring.  
 
In Central tests, LUCAS data from 2018 constitute the main part of the sample base for the crop mask. 
This sample base has been complemented by samples for forest, grassland, water and urban areas taken 
from HRL2015 and by manual samples for specific land cover such as orchards. The best way of dealing 
with small/underrepresented crop type classes has still to be discussed as it will be a fundamental issue 
for a planned roll out covering large areas or even a Pan-European one. The SMOTE approach would be 
one option reduction of classes could be the other.  
 
The availability and representation of crop and specifically crop type samples is essential for the model 
training and significantly impacts the performance and quality. When considering the crop types, more 
testing should be done when it comes to the differentiation of similar crop types. With a view to the 
planned implementation of a future agricultural HRL future it is highly recommended to analyze the 
regional diversity, local phenological conditions and crop types occurrences and to think about 
stratification.  
 
In addition to the primary class prediction result, the reliability layers can offer valuable information for 
secondary applications, e.g. the prioritization of likely incorrect field subsidy claims. It could be further 
investigated if the reliability layers can be further enhanced by improving the class probabilities they are 
derived from. For example, machine learning classifiers can be tuned to optimize the log-loss which is 
based on the class probabilities, and not an accuracy, which in contrast to the log-loss is only based on 
the binary information (correct or wrong). With log-loss, a false prediction that has a high probability is 
penalized much stronger than a false prediction with a lower probability. Instead of a typical accuracy 
score, the loss function only takes into account if a sample has been classified correct or false, but not 
the probabilities. Alternatively, it is also possible to calibrate the probabilities with a subset of the 
training samples in order to obtain improved probabilities with lower log-loss (Niculescu-Mizil and 
Caruana 2005). As a consequence of the improved probabilities the quality of the reliability layers 
increases. 
 

Concerning Agriculture classification an initial set of criteria to evaluate the best compositing method for 
crop recognition (cropland-CL, crop type-CT) and crop growth monitoring (CG) have been selected. The 
benchmark is performed on Central (Germany) and Belgium site and show promising accuracies and high 
potential of time series and derived time features for crop mask extraction and crop type monitoring. 
SMOTE method is necessary to be able to classify small occurrences classes. Mixel removal in the in situ 
dataset provides better results by allowing better features values for crop fields. 
 
The availability and representation of crop and specifically crop types samples is essential for the model 
training and significantly impacts the performance and quality. When considering the crop types, more 
testing should be done when it comes to the differentiation of similar crop types, as well as regional 
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diversity for implementation of future agricultural HRL. In the case of agriculture, to adapt to local 
phenological conditions and crop types occurrences, stratification might be required. 
 
The benchmarking results show promising accuracies and high potential of time series and derived time 
features for crop mask extraction and crop type monitoring. For a practical implementation of a future 
agricultural HRL, some more testing should be done when it comes to the differentiation of similar crop 
types, as well as regional diversity. 
 
In phase 2, lessons learned from testing that were subsequently applied in the prototypes are related to 
the need of stratification to adapt to the different conditions, including altitudinal ranges, to improve the 
classifications and minimize mixing between some classes. Additional manual sampling has improved the 
classification as it is clear that the LUCAS 2018 points are not enough. The SMOTE algorithm also 
improved significantly the mapping of less frequent classes as shown in the Western site. The integration 
of auxiliary information (e.g., DEM) enhances the products quality significantly, especially in higher 
altitudes. The high OA (> 90%) for the crop mask classification looks very promising for future 
applications, e.g., like a future HRL on Cropland. Similarly, the promising results obtained in South-Africa 
for the main crop types in spite of the large diversity of crops. 
 

3.3.5 New land cover products 

In the frame of ECoLaSS, one thematic focus is laid on the testing and production of a prototype on New 
Land Cover (NLC). In this context, two different categories of prototypes are created. One of them 
focuses on a CLC-related classification whereas the other is a combination of the HRLs 2015 with the 
available Crop Masks produced during the first phase of ECoLaSS. Within this Deliverable, the methods 
for the CLC-related prototype are described in the following sections. However, since the HRL combined 
layer is not based on an extra classification but on a combination of already existing products, the 
methods applied in this context are not included in this current Deliverable but in the section on 
Experimental Setup in the referring prototype report (D45.1b – Prototype Report New LCLU Products 
(Issue 2)).  
 
Work exposed in this section is almost entirely based on the annex document provided with the very 
recent CLC+ Backbone ITT (EEA, 2019). Main characteristics of the two main products of CLC+ Backbone 
can be summarized as follows: 
 

- A raster product, pixel-based and derived from multi-temporal S-2 input imagery, at 10 by 10m 
spatial resolution, with a set of basic land cover classes; 

- A vector product, with a 0.5ha MMU, object-based and derived from ancillary data’s linear 
networks and multi-temporal image segmentation, whose attribute classes are derived from the 
zonal statistics taken from the previously mentioned raster and complemented by additional 
characteristics from VHR and S-1. 

 
Four major steps are laid out in order to produce both products: 
 

- First step – Level 1: creation of a geometric skeleton derived from persistent features (called 
“hard bones”, i.e. stable borders based on artificial or natural linear features – represented by 
polygons of roads, railways and rivers) in the landscape – such as roads, railways, rivers; 

- Second step – Level 2: inside the skeleton underlined by Level 1 objects, Level 2 polygons are 
derived using image segmentation (called therefore “soft bones”) and based on mono-temporal 
VHR data as well as multi-temporal S-2 data (complemented with L-8 data if need be) – those 
soft bones represent spectrally and/or texturally homogeneous features in the shape of polygons 
with coherent temporal variation during the year, e.g.: 
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o Land cover units with a unique vegetation cover/surface property and homogeneous 
dynamics throughout the year; 

o Identification of single field parcels – agricultural field structure can differ only in terms 
of land cover dynamics over time. 

- Third step: production of an independent pixel-based land cover classification at 10m spatial 
resolution from multi-temporal S-2 dataset; 

- Fourth step: Characterization of all Level 2 polygons using spectral, textural and backscatter 
characteristics from S-2, VHR, and S-1 datasets, using statistical information retrieved from the 
pixel-based land cover classification from the third step. 

-  
Details on the creation of final and intermediate product can be found in Table 3-80. 

 

 

 

Figure 3-154: Proposed automated approach in the ITT for CLC+ Backbone (EEA, 2019). 
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Table 3-80:- Technical details for intermediate and final products created for the CLC+ Backbone. 

 Hard bones Soft Bones Raster product Vector product 

Reference 
year 

No older than 1-3 years 
10/2017-09/2018 

Could include 2017 and 2019 imagery 

Input data 

For roads and Railways: 
- Open Street Map 
- National Reference Data 
For rivers and water bodies: 
- EU-Hydro 
- WISE WFD 

Sentinel-2 time series with VHR 
mono-temporal complement 

Sentinel-2 time series 
Complemented over cloudy 

areas by Sentinel-1 

Fusion of {Hard Bones and Soft Bones} 
Raster product 

Attributes from S-1 time series 
Attributes of VHR 

MMU - 0.5 ha 10m*10m pixel, 100m2 0.5 ha 

MMW -  10m 20m (more or less 10m) 

Accuracy 

- More or less 5m positional 
accuracy 

- Snapping tolerance 10m 
- No dangles 
- 95% of network 

completeness (from high 
ways to agricultural 
tracks) 

- Position accuracy of more or 
less 10m 

- Appropriate size: 

 Too large polygons: less 
than 10% of all polygons 

 Too small polygons: less 
than 15% of all polygons 

- Shift of border: 20m maximum 

- Land cover classes: 90% 
overall accuracy 

- Omission errors max 15% 
- Commission errors max 

15% 

Same as Soft Bones 

Nomenclat
ure 

- For roads and railways: all 
road types 
- For rivers: all rivers a 
drainage basin larger than 
10km2 

None 

1. Sealed (Buildings and flat 
sealed surfaces) 
2. Woody needle leaved trees 
3. Woody Broadleaved 
Deciduous 
4. Woody Broadleaved 
evergreen 
5. Woody shrub 
6. Permanent herbaceous 
(grassland) 
7. Periodically herbaceous 
(arable land) 

1. Sealed (Buildings and flat sealed 
surfaces) 

11. Very high sealing degree (> 
80%) 
12. High sealing degree (50-80%) 

2. Woody needle leaved trees 
21. pure needle-leaved (> 75%) 
22. dominantly needle leaved (50-
75%) 

3. Woody Broadleaved Deciduous 
31. pure broadleaved > 75%: 

311. pure deciduous > 
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8. Lichens and mosses 
9. Sparsely vegetated 
10. Non vegetated (Bare 
rocks, scree, sand, lichen, 
permanent bare soils) 
11. Water 
12. Snow and Ice 

75% 
312. pure evergreen > 
75% 

32. dominantly broadleaved 50-
75% 

4. Shrubland (> 50%) 
5. Permanent herbaceous land (grassland, 
> 50%) 

51. woody trees < 10% 
52. woody trees 10-30% 
53. woody trees 30-50% 

6. Periodically herbaceous (arable land, > 
50%) 
7. Lichens and mosses land (> 50%) 
8. Partly vegetated 

81. intermediate vegetation cover 
30-50% 
82. low vegetation cover 10-30% 

9. Non vegetated (Bare rocks, scree, sand, 
lichen, permanent bare soils, > 90%) 
10. Water 
11. Snow and Ice 

Attributes 
- For roads and railways: 
information on the count of 
tunnels per line string 

None  

- The area percentage of the individual 
pixel-based land cover classes 

- From S-1: Wetness (5 classes), 
Roughness (5 classes) 

- From VHR: texture parameter 
- Spectral attributes: statistical mean 

and standard deviation for S-2 bands 
- Spectral indicators: NDVI, LAI (mean 

and variation across observation 
period) 
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3.3.5.1 Description of candidate methods 

We explore here the fulfilment of each step detailed in the previous section. 

 “HARD BONES” CREATION 

The “hard bones” creation uses the following datasets for permanent linear delineations, the so-called 
“hard bones” of the landscape: 

- Open Street Map for road and railway shapes; 

- EU-Hydro and WISE- for rivers and canals. 

Those linear networks are meant to be represented in those hard bones layer as polygons. However, a 

discrimination between elements wider than 20m and narrower than 20m is introduced in the ITT. This 

kind of information, such as an average width, cannot be retrieved from the ancillary databases selected. 

Therefore, this action would be derived from remote sensing data – and for finer accuracy, would be 

derived from VHR images, not S-1 nor S-2 time series. 

This work has been deemed to be outside the scope of ECoLaSS – since it not only calls for a heavy use of 

VHR images over both demonstration sites but also for a heavy manual work to assess this average width 

along roads, railways and rivers.  

In order to stay as close as possible to the CLC+ requirements, selection among what is expected to be 

the widest road and railway kinds has been done in OSM, integrating in the hard bones layer: 

- OSM railways class called ‘rails’; 

- OSM roads classes, namely ‘motorway’, ‘motorway_link’, ‘trunk’, ‘trunk_link’, ‘primary’ and 

‘primary_link’. 

Data from EU-Hydro has been integrated, as well as main rivers from OSM. The WISE dataset, once 

downloaded, turned out to be corrupted for the year 2016. A 2012 dataset is available, but falls off the 

range of the ancillary data in term of temporal fit. The retained classes integrated into the hard bones 

layer are: 

- OSM class named ‘water_a’ to retrieve water bodies in the shape of polygons; 

- EU-Hydro classes named ‘canals_p’ and ‘rivers_net_p’ for polygons only. 

However, the class ‘water_a’ also contains lakes – the OSM class ‘waterways’, which is only composed of 

purely linear objects, is used to remove all non-linear water objects. To complement this clean-up, the 

EU-Hydro ‘InLandWater’ is also involved in this intersection: elements falling outside of it are removed, 

leaving only polygons of linear water networks. 

Therefore, methodological choices could be summarized as: 

- OSM has been chosen over the South-West site (FR and ES) and the Central site (FR, DE, CH, AU) 

regarding the integration of roads and railways; 

- OSM coupled with Eu-Hydro over both sites for water bodies and rivers. 

Polygons are integrated into the hard bones layer in their current form, removed if no close linear 

network section exit in the vicinity or fused when possible if they fall below the expected MMU of 0.5ha. 

Those resulting polygons are expected to be further subdivided in the second step using automated 

image segmentation.  

“SOFT BONES” CREATION 
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The “soft bones” creation refers to the discrimination between objects that behaves temporally and 
spectrally differently during the year, which is encapsulated in a vector layer over the raster times series 
fed as input into the algorithm. 

 

Figure 3-155: In red: OSM roads and railways; in dark blue: EU-Hydro; in light blue: OSM water classes. 

 
This is a delicate step that requires to find a balance between too many segments and too few, in order 
to avoid a “salt and pepper” effect. Multi-scale approach can identify features at appropriate scales. 
 
There is no general definition for the act of segmenting an image. 
 
The characteristics of the input data used for the segmentation, the interpolated S-2 time series images, 
are detailed in the section 3.2, in order to avoid the potential disruption in the time series created by 
masked clouds and the associated lost of signal for a given date. 
 
It has been decided to investigate several classical types of segmentations, based on the list of 
characteristics available in the Table 3-81: 
 

- The SLIC algorithm; 
- The Quickshift algorithm; 
- The Watershed algorithm; 
- The Large-Scale Mean Shift algorithm; 
- The K-Means resulting from the Phenological intermediate products leading to the creation of 

the MPA layer and its derivatives. 
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 Simple Linear Iterative Clustering (SLIC) algorithm 
 
This algorithm has been proposed to the community in 2010 (Achanta, et al., 2012) and is based on a 
local 𝐾-Means clustering (in the feature space that comprises color information as well as image 
location) which will generate a superpixel segmentation with 𝐾 superpixels. SLIC is classified as a 
gradient ascent method and can be found implemented in the scikit-image library (van der Walt, et al., 
2014). 
 
A superpixel, concept proposed by Ren and Malik (Ren & Malik, 2003), is a local, coherent (in terms of 
similarity in color and spatial consistency) regrouping of pixels, which can also be defined as an 
aggregation of segments that “preserve most of the structure necessary for segmentation at the scale of 
interest”. The production of such an ensemble can be used as a pre-processing step for the real 
segmentation. 
 
The SLIC algorithm randomly initializes cluster centers before redefining their location when pixels are 
associated to the nearest cluster center whose search region is overlapping its localisation. This step of 
assignment of pixels followed by redefinition of the centers is repeated until the error converges. A post-
processing is required to enforce connectivity by assigning disjoined pixels to the closest superpixels. 
 
Several parameters need to be fine-tuned for the algorithm to give the best results – some others are 
optional and are not relevant for our work here: 
 

- Compactness – a float to balance color similarity and spatial proximity; higher values will give 
more weights to space proximity, making superpixels more cubic-like shaped. 

- Sigma – the width of Gaussian smoothing kernel executed as pre-processing for each dimension; 
- Max_iter – the maximal number of iterations for the K-means runs. 

 

 Quickshift (QS) algorithm 
 
The QS approach is a mode-seeking segmentation (Vedaldi & Soatto, 2008). It is an approximation of a 
kernelized mean-shift, meaning that instead of iteratively moving each point closer to a local mean, the 
algorithm forms a tree of links and moves each point representation into the feature space (of color and 
image location information) to the nearest neighbour in order to increase the kernel density estimate. 
No control over the size of segments is available. It is closely related to the SLIC algorithm. 
One of the advantages of this segmentation is the hierarchical computation executed at multiple scales 
simultaneously. 
 
Here are the two main parameters, that are relevant for our soft bones: 
 

- Ratio – a float to balance color similarity and spatial proximity; higher values will give more 
weights to color proximity, as opposed to the compactness parameter for SLIC; 

- Sigma – the width of Gaussian smoothing kernel executed as pre-processing for each dimension; 
- Kernel_size – the width of the Gaussian kernel used in smoothing the sample density; it controls 

the scale of the local approximation and higher values mean fewer clusters; 
- Max_dist – the cut-off point for data distances; higher values also mean fewer clusters. 
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Table 3-81: - Characteristics of classical segmentation algorithms, available in open-source libraries. 

Segmentation 
Multi-

spectral 
handling 

Multi-
temporal 
handling 

Remarks 
Open-Source 
availability 

Multi-
threading 

Complexity 
Investigated 
in ECoLaSS 

Random Walker Yes Yes 
Requires manual markers set by an 

operator 
scikit-image Yes 

𝑂(𝑁), where 𝑁 the 
number of pixels 

No 

Active Contour Yes No 
Requires manual points set by an 

operator 
scikit-image Yes 𝑂(𝑁2) No 

Felzenswalb and 
Huttenlocher 

Yes No Tends to oversegment 
scikit-image 

eo-learn 
Yes 𝑂(𝑁 log(𝑁)) No 

Simple Linear Iterative 
Clustering 

Yes Yes 
Tends to oversegment; needs a post-

processing step 
scikit-image 

eo-learn 
Yes 

𝑂(𝐾) where 𝐾 is the 
number of expected 

superpixels 
Yes 

Quickshift Yes Yes Tends to oversegment scikit-image Yes 
𝑂(𝑑 𝑁2) where 𝑑 is a 

small constant 
Yes 

Watershed Yes Yes 
Tends to oversegment; Works better 

with manual markers set by an 
operator; Use of markers optional 

scikit-image 
OTB 

Yes 
Yes 

𝑂(𝑁 log(𝑁)) Yes 

Chan-Vese Segmentation 
No – 

grayscale 
only 

No - scikit-image Yes 𝑂(𝑁) No 

Morphological Geodesic 
Active Contours 

(MorphGAC) 

No – 
grayscale 

only 
? 

Requires pre-processing: Inverse 
Gaussian Gradient to highlight 

contours 
scikit-image Yes <  𝑂(𝑁) No 

Morphological Active 
Contours without Edges 

(MorphACWE) 

No – 
grayscale 

only 
? - scikit-image Yes <  𝑂(𝑁) No 

Large-Scale Meanshift 
Segmentation 

Yes Yes Resource-consuming 
OTB 

 
Yes, 

partially 
𝑂(𝑁2) Yes 

Connected Components No Yes 
Fractional land cover, depending on 

parameters to be chosen by operator 
OTB ? 

𝑂(𝐸 + 𝑉), where  
𝐸 is the number of edges 

and 𝑉 of vertices 
Yes 
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 Watershed algorithm 
 
The traditional version of this algorithm is used mostly on gray-scale images (Beucher & Lantuejoul, 
1979). It treats image like a topographic surface, using the gradient descent in order to artificially 
reproduce a flow gradually flooding the various regions of the image, usually starting from the minima, 
defined as sources. Those regions, forming catchment basins, define local geometrical structures of the 
image associated with one or several local extrema. The input data is usually a filtered version of the raw 
image. The algorithm strategy consists in treating the magnitude of pixels as a function 𝑓, describing 
height, assuming that higher (or lower) values of 𝑓 (or −𝑓) reveals the presence of natural boundaries on 
the original image. In the case of multi-spectral images, the considered height function is the gradient 
magnitude of the amplitude, i.e., the square root of the sum of squared bands. 
 
The drawback of this algorithm lies in the production of a large quantity of regions, each associated with 
a local minimum – resulting in an over-segmentation. This can be partially alleviated by using a minimal 
watershed depth, where basins whose depths fall below this threshold are regrouped into one region. 
 
In order to run smoothly over large areas, the algorithm implemented in OTB for the watershed 
segmentation tends to subdivide the AOI into smaller areas, and the segmentation is repeatedly run over 
those artificially isolated areas. The spectral discrimination is therefore only based on the spectral 
signature of pixels present in the considered smaller area. 
 
Two parameters can be adjusted in the classical version of this algorithm: 

- Depth threshold – expressed in percentage of the maximum depth of the image, which is here 
the maximal difference of reflectance; 

- Flood level – float between 0 and 1, it is used to generate the merge tree from the initial 
segmentation. 

 

 Large-Scale Mean Shift (LSMS) algorithm 
 
This particular algorithm was selected during the production of the HRL 2015 Grassland for its robustness 
and multi-threaded execution mode. It is based on an iterative mode-seeking procedure, such as the QS 
method, focused on finding the local maximum of a density function, in order to form modes in color or 
intensity feature space of the considered image. This is a classical image segmentation method which 
produces irregularly shaped segment with no uniform size or minimal size and a post-processing is 
needed to enforce a minimal size, where cluster of pixels below the minimal size are regrouped with a 
nearby cluster whose spectral signature is the closest to the one of the considered segment. The 
complexity of the algorithm (in 𝑂(𝑁2)) is making it quite slow to implement. 
 
A pre-processing step needs be applied on the image in order to filter the spectral noise: the meanshift 
smoothing. For any given pixel of the image, its value is replaced by the average spectral signature of its 
neighbour pixels (determined by the spatial radius for this pre-processing step in particular). This 
procedure is repeated until the maximum of iterations or a given smoothing threshold is reached. 
 
This algorithm features numerous parameters that can be adjusted to tailor the segmentation result: 

- Spatial radius – threshold on the spatial distance to consider pixels belonging to the same 
segments; a good value is half of the spatial radius parameter that was used in the meanshift 
smoothing step; 

- Range radius – threshold on the spectral Euclidian distance distance (see second issue of WP31 
[AD06]); 

- Maximum number of iterations – number of iterations to finish the smoothing preprocessing; 
- Minimal size - minimal size of a delineated region, with smaller clusters merged with the 

neighbouring cluster whose radiometry is the closest. 
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Following the CLC+ ITT requirements, this minimal size should be set to 50 pixels, corresponding to the 
0.5ha MMU expected for the vector final product. 
 
It should be noted that a multi-scale implementation was envisioned at the end of Phase I for the LSMS 
segmentation. However, this processing was supposed to be based on the pixel-based classification and 
the zonal statistics. The idea was to look at the repartition of classes inside a first large polygon 
(produced with a LSMS whose minimum size was 500 pixels, e.g.) and if multiple classes were to be 
represented, the polygon should then be subdivided using an intermediate scale segmentation input 
(e.g. from LSMS whose minimum size was 200 pixels) into smaller polygons, until either the smallest 
scale of the produced segmentations was reached or the representativity of classes was uniformed with 
one strongly dominant class. 
 
This methodology was not compliant with the latest requirement of the CLC+ ITT and will therefore not 
be explored in Phase II. In fact, the ITT requires a finer discrimination than the classes representativity for 
a given polygon. For example, various states of forest, due to different canopy heights or to different 
tree ages, should be delineated into different polygons in the final segmentation, even when adjacent. 
Urban buildings and flat artificial areas should also be delineated into the segmentation. 
 

 Phenological Layers 
 
The phenological layers are generated based on the NDVI time series, where each pixel of the 
demonstration site is classified into an “activity” class, depending on the behaviour of its NDVI values 
during the year. The methodology is detailed in section previous sections and further discussed in the 
report of W41 [AD10]. 
 
This k-means classification on this phenological layers allows the regrouping of coherent ensembles in 
the landscape, just like a segmentation on the time series would do, with a particular focus on the 
vegetation, matching the type of high level typology that is set for the raster classification. A majority 
filter of 0.5ha (corresponding to 50 S-2 pixels) is applied and the resulting raster is transformed into a 
vector layer. The geometry thus created is used as a soft bones layer. 
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Table 3-82: - Targeted typology, used typology over the test sites and matching with LUCAS, CLC and other ancillary datasets 

Last version available 
of the CLC+ 

nomenclature 

Adopted 
nomenclature on 

SW and Central test 
sites 

Matching 
typology in 

LUCAS 

Matching typology 
in UA 

Matching typology in 
Riparian Zone/Coastal 

Zone/ Natura 2000 

Matching typology 
in CLC 

Matching typology 
in other ancillary 

databases 

1. Sealed (Buildings and 
flat sealed surfaces) 

Sealed Areas 
A00 Artificial 

Land 

11100 Continuous 
Urban Fabrics 

1.1.1.1 Continuous 
urban fabric 1.1.1 Continuous 

urban fabric 

HRL 2015 IMP 
status layer 
IMD > 5% 

1.1.1.2 Dense urban 
fabric 

11300 Isolated 

Structures 
- 

1.1.2 Discontinuous 
urban fabric 

12100 Industrial, 

commercial, public, 

military and private 

units 

1.1.1.3 Industrial or 
commercial units 

1.2.1 Industrial or 
commercial units 

12210 Fast transit 

roads and associated 

land 
1.2.1.1 Road network 
and associated land 

1.2.2 Road and rail 
networks and 

associated land 
12220 Other roads 

and associated land 

12230 Railways and 
and associated land 

12300 Port Areas 1.2.1.3 Port areas 1.2.3 Port areas 

2. Woody needle leaved 
trees 

Coniferous 
C20 Coniferous 

Woodland 

31000 Forests 

3.2 Coniferous forest 
3.1.2 Coniferous 

forest 
HRL 2015 FOR>30% 

DLT status layer 

3. Woody Broadleaved 
Deciduous 

Broadleaves 
C10 Broadleaved 

Woodland 

3.1.3.1 Other natural 
& semi natural 

broadleaved forest 3.1.1 Broad-leaved 
forest 

HRL 2015 FOR>30% 
DLT status layer 3.1.5.1 Highly artificial 

broadleaved 
plantations 



D8.2 – D33.1b Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020   |Page 279| Issue/Rev.: 2.0 

   

4. Woody Broadleaved 
evergreen 

Evergreen 
CXX9 

Broadleaved 
evergreen forest 

3.1.4.1 Broadleaved 
evergreen forest 

3.2.3 Sclerophyllous 
vegetation 

- 

5. Woody shrub 
Clear cuts/Woody 

shrub 

D10 Shrubland 
with Sparse Tree 

Cover 
32000 Herbaceous 

vegetation 
associations 

5 Heathland and scrub 

3.2.4 Transitional 
woodland-shrub 

- 
D20 Shrubland 
without Tree 

Cover 

3.2.2 Moors and 
Heathlands 

6. Permanent 
herbaceous (grassland) 

Grasslands E00 - Grassland 
32000 Herbaceous 

vegetation 
associations 

4 Grassland 

3.2.1 Natural 
grasslands HRL 2015 GRA 

status layer 
2.3.1 Pastures 

7. Periodically 
herbaceous (arable 

land) 

Annual Crops 

B00 - Cropland 

21000 Arable land 
(annual crops) 

2.1.1.1 Non-irrigated 
arable land 

2.1.1 Non-irrigated 
arable land 

- 

2.1.3.1 Irrigated 
arable land and rice 

fields 
2.1.2 Permanently 

irrigated land 
2.1.4.1 Complex 

patterns of irrigated 
and non-irrigated 

arable land 

Permanent Crops 
22000 Permanent 

crops 
- 

2.2.1 Vineyards Open Street Maps 
for permanent 

crops (vineyards 
and orchards) 

2.2.2 Fruit trees and 
berry plantations 

2.2.3 Olive groves 

8. Lichens and mosses Lichens and Mosses 
F30 Lichens and 

Moss 

33000 Open spaces 
with little or no 

vegetations 

7.2.1.2 Unexploited 
peat bog 

4.1.2 Peatbogs - 

9. Sparsely vegetated 
Determined using 

zonal statistics in the 
final fusion 

- 
33000 Open spaces 

with little or no 
vegetations 

6.1.1.1 Sparsely 
vegetated areas 

3.3.3 Sparsely 
vegetated areas 

- 

10. Non-vegetated 
(Bare rocks, scree, sand, 

Sand F20 Sand 
33000 Open spaces 

with little or no 
6.2.1.1 Beaches 

3.3.1 Beaches - 
6.2.1.2 Dunes 
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lichen, permanent bare 
soils) 

vegetations 6.2.1.3 River banks 

Rocks 
F10 Rocks and 

Stones 
6.2.2.1 Bare rocks and 

rock debris 
3.3.2 Bare rocks 

Burnt areas 
F40 Other bare 

soil 
6.2.2.2 Burnt areas 

(except burnt forest) 
3.3.4 Burnt areas 

11. Water Water 
G00 Water 

Areas 
50000 Water 

9 Rivers and lakes 
5.1.1 Water courses 

HRL WaW 2015 

5.1.2 Water bodies 

8 Lagoons, coastal 
wetlands and 

estuaries 

5.2.1 Coastal 
lagoons 

5.2.2 Estuaries 

5.2.3 Sea and ocean 

12. Snow and Ice Snow and Ice 
G50 Glaciers, 
Permanent 

Snow 

33000 Open spaces 
with little or no 

vegetations 

6.2.2.3 Glaciers and 
perpetual snow 

3.3.5 Glaciers and 
Perpetual Snow 

- 
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PIXEL-BASED CLASSIFICATION RASTER CREATION 

Based on the results from the previous phase of tests, the classification used here is a random forest 
algorithm, taking advantage of the full time series of images for the considered year as input. Details of the 
algorithm have already been presented in section 3.2. 
 
Several features are computed and then added to the raw pre-processed data: 
 

- The algorithm computes a linear interpolation between all dates in order to fill the gaps left by the 
cloud masks or the no-data mask, as detailed for the phenological products in section 3.2; 

- For each of those dates, the algorithm computes several spectral indices, the NDVI, the NDWI as well 
as the brightness index. 

 
The nomenclature is based on the EAGLE land cover component concept: 
 

1. Sealed (Buildings and flat sealed surfaces): all impervious and sealed surfaces, covered with features 
of a certain height above ground or without; 

2. Woody needle leaved trees: trees belonging to the botanical group Gymnospermae; 
3. Woody Broadleaved Deciduous: trees belonging to the botanical group Angiospermae, and that are 

leafless during a given period of the year; 
4. Woody Broadleaved evergreen: trees also belonging to the botanical group Angiospermae, but tha 

remain green all year long; 
5. Woody shrub: woody plants in shrub growth, with a height usually less than 8m; 
6. Permanent herbaceous (grasslands): a continuous vegetation cover throughout the year, without the 

occurrence of bare soil – those areas are either unmanaged or extensively managed; 
7. Periodically herbaceous (arable land): arable areas characterized by at least one LC change between 

bare soils and vegetated surface during the considered year; 
8. Lichens and mosses: any type of lichens and mosses, mostly found in northern European tundra; 
9. Sparsely vegetated: unstable areas, with a mix between bare soils and vegetated surfaces, whose 

percentages should be comprised between 10 and 50%; 
10. Non-vegetated (bare rocks, scree, sand, lichen, permanent bare soils): consolidated or 

unconsolidated materials with less than 10% of vegetation; 
11. Water: all water bodies, including natural or artificial, salt or fresh, running or still; 
12. Snow and Ice: areas covered almost permanently with snow (90% of the observation time) or 

permanently with ice (100% of the observation time). 
 
In order to select the samples used as input for the classification, ancillary datasets have been used for each 
test site. The matching between those datasets and the nomenclature selected for the CLC+ Core products 
are listed in Table 3-82. 
 
It should be noted that the “sparsely vegetated” class has no clear immediate match in the LUCAS databases, 

at least without a defined percentage of possible vegetation cover. Several classes (woody shrub, lichens and 

mosses, sparsely vegetated and non-vegetated) will be quite tricky to sample for the training of the classifier. 

The extraction of spectrally pure samples will be challenging for those classes, because samples at pan-

European level will mostly be provided by CLC2018, with a spatial resolution of 25ha – a manual pre-

selection will be required. Due to their restricted representativity, classes such as lichens and mosses, turned 

out to have very few points in the LUCAS dataset. 

FUSION AND POST-PROCESSING: FUSION OF HARD BONES AND SOFT BONES 

Both hard bones and soft bones layers are vector layers. In order to merge both, a polygon union is 
executed, which will preserve all polygons from both layers. Polygons will then be further subdivided, for 
example the road polygons from the hard bones will be further divided into the segmentation polygons. 
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A snapping threshold can be set in order to avoid many sliver areas. Several thresholds need to be tested 
depending on the quality of the segmentation and the datasets of linear networks. 
The hard bones layer will be snapped over the segmentation in order to maintain the pixel-size matching 
between the segmentation and the S-2 time series, i.e. only the polygons from the hard bones should 
“move” to be set over the S-2 pixels grid. 

FUSION AND POST-PROCESSING: OBTENTION OF A CLC+ BACKBONE PROTOTYPE 

The fourth and last step consists in the attribution of the delineated objects from the second step, using: 
- Spectral characteristics of the land cover from S-2 data; 
- Textural characteristics from VHR data; 
- Backscatter characteristics tailored for the whole geographical cover from S-1 data: 

o Wetness: Vey wet, wet, intermediate, dry, very dry; 
o Roughness: Very rough, rough, intermediate, smooth, very smooth. 

 
It has been decided for this project to focus on the characteristics of the LC provided by S-2 data, since the 
use of a full coverage of VHR images over each demonstration site is outside the scope of this project, as well 
as the production of wetness and roughness categorical classes derived from S-1 backscatter time series, 
whose skills required for the conception at such scales are not to be found inside the consortium. 
 
The attribution of land cover to polygons of the fusion of hard and soft bones, from the pixel-based 
classification raster, is done using zonal statistics, which is a vector operation that list the number of pixels 
present in a given polygon for each class of the raster classification. For each polygon, percentage of LC 
coverage per class is then determined based on this pixel count, and attribution is made: 

- To the dominant LC class; 
- To the 3 most dominant LC classes; 
- To a particular class given a percentage of LC present in the polygon. 

 
For each class of the final vector product and their associated subclasses, rules can be written, as detailed in 
Table 3-83. The woody trees classes are defined with: 

- The woody – needle leaved trees; 
- The woody – broadleaved, deciduous trees; 
- The woody – broadleaved, evergreen trees. 

 
The vegetation classes from the raster classification are the following:  

- The woody trees; 
- The woody – shrubs; 
- Permanent herbaceous; 
- Periodically herbaceous; 
- Lichens and mosses. 
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Table 3-83: - List of rules to populate the vector layer created by the fusion of hard and soft bones, using the raster 

classification. 

Raster classes Vector classes Vector subclasses Rules 

1 - Sealed (buildings 
and flat sealed surfaces) 

Built-up land 

11. Very high sealing 
degree 

Sealed > 80% 

12. High sealing 
degree 

Sealed between 50 and 80% 

2 - Woody – needle 
leaved trees 

Woodland – needle 
leaved trees 

21. Pure needle 
leaved 

Needle leaved trees > 75% 
Woody trees >= 50% 

22. Dominantly 
needle leaved 

Needle leaved trees 
between 50 and 75% 
Woody trees >= 50% 

3 - Woody - 
broadleaved, deciduous 

trees 

Woodland – 
broadleaved trees 

31. Pure broadleaved 
Broadleaved trees > 75% 

Woody trees >= 50% 

311. Pure deciduous 
Deciduous trees > 75% 
Woody trees >= 50% 

Woody – broadleaved, 
evergreen trees 

312. Pure evergreen 
Evergreen trees > 75% 
Woody trees >= 50% 

32. Dominantly 
broadleaved 

Broadleaved trees between 
50 and 75% 

Woody trees >= 50% 

Woody – shrubs Shrubland - Shrubs > 50% 

Permanent herbaceous 
(i.e. grasslands) 

Permanent 
herbaceous land 
(i.e. grasslands) 

51. Without trees 
Permanent herbaceous > 

50% 
Woody trees =< 10% 

52. With few trees 

Permanent herbaceous > 
50% 

Woody trees between 10 
and 30% 

53. With many trees 

Permanent herbaceous > 
50% 

Woody trees between 30 
and 50% 

Periodically herbaceous 
(i.e. arable land) 

Periodically 
herbaceous land 
(i.e. arable land) 

- 
Periodically herbaceous >= 

50% 

Lichens and mosses 
Lichens and 
mosses land 

 Lichens and mosses >= 50% 

Sparsely vegetated 
Partly vegetated 

land 

81. Intermediate 
vegetation cover 

Total of vegetation classes 
between 30 and 50% 

Non-vegetated >= 50% 

82. Low vegetation 
cover 

Total of vegetation classes 
between 10 and 30% 

Non-vegetated >= 50% 

Non-vegetated (i.e. 
rock, screes, sand, 

lichen, permanent bare 
soil) 

Non-vegetated 
land (i.e. rock, 
screes, sand, 

lichen, permanent 
bare soil) 

 Non-vegetated >= 90% 

Water Water Water >= 50% 

Snow and ice Snow and ice Snow and ice >= 50% 

 



D8.2 – D33.1b: Time Series Analysis for Thematic Classification Date: 18.12.2019 
ECoLaSS – Horizon 2020 |Page 284 |  Issue/Rev.: 2.0 

   

3.3.5.2 Benchmarking criteria 

The intermediate steps, namely the creation of the hard bones and the soft bones, will be assessed visually 
by a photo-interpreter, in order to sort out candidates and refine the final selection, in particular for the 
segmentation methodologies. 
 
The choice of the RF algorithm for the raster classification has been guided by the phases 1 and 2 results for 
all other thematic classification – therefore no attempt to benchmark it with another classifier has been 
done. 
 
The most common metrics to evaluate the geometric quality of a segmentation are the Hoover metrics 
(Hoover, et al., 1996) – they can quantify cases of: 

- correct detection; 
- over-segmentation; 
- under-segmentation; 
- missed detection. 

However, they require a ground truth as input – meaning a segmentation for all given classes should have 
been produced manually over each test site. Due to the time-consuming process, this kind of benchmarking 
was not undergone. Segmentations are visually evaluated, while also taking into account means of 
improvement, resource-consumption as well as other issues already pointed out in the CLC+ ITT. 

3.3.5.3 Implementation and results of benchmarking 

HARD BONES 

A visual examination is realized over the two test sites by superposing the hard bones with a cloud-free S-2 
image during the vegetation season peak, in order to highlight roads, railways and water bodies. 
 
In Figure 3-156 and Figure 3-157, the network from hard bones can be seen superposed to ERSI Imagery 
maps. 
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Figure 3-156 – Hard bones superposed over the S-2 tiles delineation (in blue) for the Central test site 

Figure 3-157 - Hard bones superposed over the S-2 tiles for the South-West tests site 
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SOFT BONES 

The qualitative assessment starts with a first testing range based on logarithmic scales when possible. 
Depending on the selected best parameters, segmentations are run on a second testing range with a finer 
increment. 
 
In order to increase contrast and reduce the amount of input data, the maximal values of each pixel, for each 
band, along the whole time series has been first computed – however, this statistical temporal metrics 
turned out to be contaminated by cloudy values, in particular over mountainous regions, where cloud 
detection algorithms experience issues to discriminate snow from clouds. 
 
The mean computation of a manually selected ensemble of images free from those cloud mask issues was 
then fed to the statistical algorithm, in order to avoid anomaly that can be seen on Figure 3-158and Figure 
3-159. 
 

 

Figure 3-158: Maximum values of all images over the year 2018 (tile T32TNT). On the lower right, lower values in dark 

grey are created by the gaps in swath trajectories. Dark grey squares come from the cloud detection algorithm of 

MAJA, while the light grey trace in the left corner is produced by undetected atmospheric veil. 
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Figure 3-159: Mean values of a selection of the best scenes over the same area from the previous figure. Cloudy and 

snowy images have been removed from this restrained time series. 

 
For the LSMSS, it is clear from the first testing range that higher values for the spatial and range radii 
produce to less segmented final vector layer – however it should be noted that this leads to longer and 
longer running times. The maximum number of iterations also considerably lengthens the process, even for a 
single image, but yields to very slightly better segments than the 5-iteration runs, mostly in the definition of 
water bodies and forest contours. The minimal size gives the best results and is kept as such in the second 
testing part, since it is in accordance with the MMU required by CLC+. 
 

Table 3-84: - Parameters tested for the LSMS segmentations. 

Parameters First testing range Best choice Second testing range Final choice 

Spatial 
Radius 

Smoothing: 
[1; 10; 100; 200] 

200 [150; 200; 250] 150 

Segmentation: 
[0.5; 5; 50; 100] 

100 [75; 100; 125] 75 

Range Radius 

Smoothing: 
[1; 10; 100; 200] 

200 [150; 200; 250] 150 

Segmentation: 
[0.5; 5; 50; 100] 

100 [75; 100; 125] 75 

Minimal Size [10; 25; 50] 50 50 50 

Number of 
iterations 

[5; 10; 20] 5 5 5 

 
The best results, seen in Figure 3-160 and Figure 3-161, were obtained for high values in spatial and range 
radii, lengthening considerably the execution time, despise the built-in multi-threading mode that could take 
up to 56 processors in parallel – that unfortunately becomes impracticable for operational settings. This 
algorithm has been tested over a quarter of the T32TNT tile, and has already exhibited an incredibly 
resource-consuming behaviour, that is mainly due to the smoothing step, as well as the regrouping part to 
reach the set MMU – while the segmentation step in itself is rather quick. However, this smoothing step 
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ensures a spectral distribution of the reflectance values much closer to a Gaussian one and remains an 
imperative prerequisite. 
 

 

Figure 3-160: LSMSS as a vector layer with the best selected parameters drapped over the RGB bands (S-2 bands 2, 3 

and 4) of the mean value raster of the selection of best scenes over the T32TNT. 

 

 

Figure 3-161: For comparison, the LSMSS as a vector layer drapped over an ESRI Imagery VHR. 
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For watershed segmentation, a strong tendency to over-segment can be spotted for all choice of 
parameters, but some tiles fare better and coherent ensembles appear in the landscape for the first testing 
range. In the second one, with the flood level at 0.125, forests tend to be over-segmented, but agricultural 
parcels to be under-segmented, aggregating multiple fields together. The best results are reached at 0.0025 
for the depth threshold and at 0.075 for the flood level, as seen in Table 3-85 but it should be noted that: 
 

- Strange aggregations of agricultural fields are still visible; 
- Strong over-segmentation is still present in the forest; 
- There is a systematic over-segmentation of all roads; 
- Multiples micro-polygons of less than 5 pixels are scattered over the landscape; 
- There is no clear leveraging parameter on the minimal amount of pixels for the segments; 
- There is a strong incoherence between tiles (produced automatically for multi-threading), i.e. the 

algorithm tends to over-segment or under-segment depending on the regions and the spectral 
signature of the given tiles. 

 
The same area chosen for the LSMSS is displayed in Figure 3-162 and Figure 3-163. This last characteristic, 
however, calls for the dismissal of such algorithm. In fact, tiling will then clearly depend on the construction 
– and will not be reproducible over different material configuration in terms of memory and threads 
available. This should clearly be avoided in operational set-up. With the best set of parameters chosen, this 
discrepancy is less than visible than in the other set of parameters tested – yet this can still be spotted, as 
presented in Figure 3-164. 
 
 
 
 
 
 
 

Table 3-85: Parameters tested for the classical watershed segmentation. 

Parameters First testing range Best choice Second testing range Final choice 

Depth 
threshold 

[0.005; 0.01; 0.05; 0.1] 0.005 [0.0025; 0.005; 0.0075] 0.0025 

Flood level [0.01; 0.1; 0.2; 0.5] 0.1 [0.075; 0.1; 0.125] 0.0075 

 
A final test has been carried out to try and tackle this discrepancy between tiles of the same image: as a pre-
processing step, the smoothed image coming from the first part of the LSMS segmentation has also been 
used as input data. However, this does not resolve the under-segmentation of agricultural fields, even 
though a slight improvement of the micro-polygons could be seen, yet not sufficient. 
 
This algorithm is therefore is discarded for further testing after visual inspections. 
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Figure 3-162: Watershed segmentation as a vector layer with the best selected parameters drapped over the RGB 

bands (S-2 bands 2, 3 and 4) of the mean value raster of the selection of best scenes over the T32TNT. 

 

 

Figure 3-163: For comparison, the watershed segmentation as a vector layer drapped over the same ESRI Imagery 

VHR. 
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Figure 3-164: The separation between the two tiles generated by the watershed algorithm is in the middle of the 

image. On the left, over-segmentation of agricultural fields can be seen, while on the right, individual fields are quite 

well separated from other LC. 

 
The SLIC algorithm leads to quick and rather visually coherent results, depending on the different 
parameters used, in particular the compactness. However, segmentation over water bodies is always over-
segmented. Roads are clearly visible, but agricultural fields are also over-segmented, in particular between 
the borders of the fields and the inside of the field itself. 
 

 Table 3-86: Segmentation testing parameters  

Parameters First testing range 
Final 

choice 

Compactness [0.01; 0.5; 1; 5; 10] 0.01 

Sigma   
0
0
0
 ,  

1
1
1
 ,  

10
10
10

 ,  
0
0
1
 ,  

0
0

10
 ,  

1
1
0
 ,  

1
1

10
 ,  

10
10
0

 ,  
10
10
1
      

1
1
1
  

Number of 
iterations 

[5; 50; 100] 100 

 
The results are not really satisfying, unlike the LSMSS ones, but still better than the ones obtained with the 
watershed algorithm, as seen in Figure 3-165 and Figure 3-166. 
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Figure 3-165: - SLIC segmentation as a vector layer with the best selected parameters drapped over the RGB bands (S-

2 bands 2, 3 and 4) of the mean value raster of the selection of best scenes over the T32TNT. 

 

 

Figure 3-166: For comparison, the SLIC segmentation as a vector layer drapped over the same ESRI Imagery VHR. 
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The phenological layers methodology is developed in the sections above and further detailed in the report of 
WP41 [AD10]. The methodology could be easily replicated from one year to the other, solving one of the 
issues raised by the CLC+ ITT. However, the overall aspect of the segmentation is not perfect, mostly in the 
urban areas. This could be improved by using a composed component algorithm targeting values of the NDVI 
indicating the presence of sealed areas. A few agricultural field are merged, due to the enforcement of the 
MMU, as can be seen in Figure 3-167 and Figure 3-168. 

 

Figure 3-167: “Phenological segmentation” as a vector layer with the best selected parameters drapped over the RGB 

bands (S-2 bands 2, 3 and 4) of the mean value raster of the selection of best scenes over the T32TNT. 
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Figure 3-168: For comparison, the “phenological segmentation” as a vector layer drapped over the same ESRI 

Imagery VHR. 

 
The summarized results of those segmentations benchmarking can be found in Table 3-87. 
 

Table 3-87: - Benchmarking for the segmentation algorithms. 

Algorithms 
Run 
time 

Reproductibility 
on different 

hardware 

Reproductibility from 
one year to the other 

Required 
improvement 

if selected 

Visual 
Appreciation 

LSMSS ++++++ 
Ensured by the 

algorithm 

Spectral and spatial 
smoothings rely on 

reflectance values, yet 
not as strongly as other 

algorithms 

- +++ 

Watershed + Not ensured 

Parameters heavily rely 
on reflectance values 

range, thus depending on 
the region and weather 

Enforcement 
of the MMU 

required 
- 

SLIC ++ 
Ensured by the 

algorithm 

Compactness heavily 
relies on reflectance 
values range, thus 

depending on the region 
and weather 

Enforcement 
of the MMU 

required 
+ 

K-Means 
from 

phenological 
activities 

+++ 
Ensured by the 
methodology 

Ensured by the 
methodology 

Enforcement 
of the MMU 

required 
++ 

 
After careful reviews, the K-Means layer transformed as a vector layer is selected as the best trade-off 
between speed and correctness of the segmentation. 
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RANDOM FOREST CLASSIFICATION: TEST SITE SOUTH-WEST TILES (30TYP AND 31TCJ) 

The repartition of the LUCAS points available, and used in the manual selection of sampling data, over the 
test site can be found in the Table 3-88. 

Table 3-88: - Available points in the LUCAS dataset from 2018, made available for ECoLaSS over the 31TCJ and 30TYP 

Sentinel-2 tiles. 

Last version available of the nomenclature 
Matching points over 
the test site in LUCAS 

Matching polygons in CLC 2018 

1. Sealed (Buildings and flat sealed 
surfaces) 

110 1131 

2. Woody needle leaved trees 39 375 

3. Woody Broadleaved Deciduous 335 2440 

4. Woody Broadleaved evergreen 0 0 

5. Woody shrub 19 422 

6. Permanent herbaceous (grassland) 370 1013 

7. Periodically herbaceous (arable land) 633 1085 

8. Lichens and mosses 0 - 

9. Sparsely vegetated - 0 

10. Non-vegetated (Bare rocks, scree, sand, 
lichen, permanent bare soils) 

29 2 

11. Water 9 154 

12. Snow and Ice 0 0 

 
The best results are reached when at least 50 points are used per class, therefore excluding the LUCAS 
database as sole source for sampling selection. The use of random forest requires an equal number of points 
or polygons per class. 
 
As seen in Table 3-88, woody shrub samples could be automatically selected from polygons in the 322 CLC 
class. However, since this class characterizes transitional land covers, at a minimal mapping unit of 25ha, the 
automated addition could potentially degrade the classification results if many evolutions have taken place 
in the landscape. It is also expected that the large spatial resolution may lead to the aggregation of mixed 
pixels, such as woodlands and bare soils, due to clear cuts, with potential shrub and forest regrowth resulting 
from older cuts, which would also lead to expected confusion in the classification results, due to the 
variability in the spectral and temporal signature. 
 
There were not enough samples in the datasets of reference to create a class for the bare soils. However, 
when looking at the whole demonstration site, this class needs to be reintroduced. The classification can be 
found in the Figure 3-169 and the confusion matrix automatically generated in Table 3-89. 
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Figure 3-169: Random Forest classification over T31TCJ and T30TYP 

 
Permanent crops and annual crops were initially split, but it appears that some permanent crops could be 
linked to the forest classes (orchards e.g.) while other could be linked to woody shrubs (e.g. vineyards). This 
is resolved at the demonstration site scale in the report of WP45. 
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Table 3-89: Automatically generated confusion matrix for the test site in the South-West. 

South-West test site 
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Sealed Areas 11380 15 672 879 48 22 1 146 13163 0.86 

Annual Crops 2367 84547 551 1727 34 104 1 0 89 331 0.95 

Permanent Crops 1226 463 10277 1442 39 7 2 0 13456 0.76 

Grasslands 1824 1599 1672 10535 87 117 0 0 15 834 0.67 

Woody Shrubs 3616 392 21 19 11604 4 0 0 15 656  0.74 

Broadleaved Forest 74 0 139 265 157 37454 300 0 38389 0.98 

Coniferous Forest 20 0 3 2 1 1070 12424 0 13520 0.92 

Water 211 177 17 17 1 0 1 17018 17442 0.98 

 

Total 20178 87 193  13307 14886 11971 38 778 12 729 17164 217 791 
  

PA 0.56 0.96 0.77 0.71 0.97 0.97 0.98 0.99  
 

0.901 OA 

        0.872 Kappa 
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RANDOM FOREST CLASSIFICATION TEST SITE: CENTRAL TILES (32TNT AND 32UNU) 

The availability of data for sampling training can be seen in Table 3-90, with the repartition of the LUCAS 
points available, as well as the polygons from CLC2018. 

Table 3-90: - Available points in the LUCAS dataset from 2018, made available for ECoLaSS over the T32TNT and 

T32UNU tiles. 

Last version available of the nomenclature 
Matching points over 
the test site in LUCAS 

Matching polygons in CLC 2018 

1. Sealed (Buildings and flat sealed surfaces) 87 1859 

2. Woody needle leaved trees 117 1903 

3. Woody Broadleaved Deciduous 90 1043 

4. Woody Broadleaved evergreen 0 0 

5. Woody shrub 10 388 

6. Permanent herbaceous (grassland) 398 525 

7. Periodically herbaceous (arable land) 256 3612+363 

8. Lichens and mosses 0 - 

9. Sparsely vegetated - 388 

10. Non vegetated (Bare rocks, scree, sand, 
lichen, permanent bare soils) 

5 5+124+0 

11. Water 3 104 

12. Snow and Ice 0 21 

 
The corresponding figure and table show the results of the tests carried out in the Central tiles. 

 

 

   

Figure 3-170: Raster classification from random forest algorithm over T32TNT and T32UNU 
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 Table 3-91: Automatically generated confusion matrix for the test site in the Central test site. 

Central test site 

REFERENCE 
  

Sealed 
Areas 

Annual 
Crops 

Perman
ent 

Crops 

Grassla
nds 

Broadle
aved 

Forest 

Conifer
ous 

Forest 

Bare 
Soils 

Snow Water 
Woody 
Shrub 

Total UA 

P
R

O
D

U
C

T 

Sealed Areas 13127 53 336 454 61 17 23 23 8 12 14114 0.93 

Annual Crops 1679 29158 9 323 0 0 179 0 0 3 31351 0.93 

Permanent Crops 466 4 6523 278 128 46 0 0 0 41 7486 0.87 

Grasslands 620 967 990 34005 46 16 4598 0 0 541 41783 0.81 

Broadleaved 
Forest 

225 61 201 175 46459 2128 0 0 0 565 49814 0.93 

Coniferous Forest 22 5 0 18 432 37983 0 0 0 285 38745 0.98 

Bare Soils 1165 20 0 22 0 5 63411 2129 148 9013 75913 0.83 

Snow 0 0 0 0 0 0 114 8345 0 0 8459 0.99 

Water 0 0 0 0 0 0 0 0 3139 0 3139 1 

Woody Shrub 1145 165 214 895 230 1063 1551 1 11 21716 26991 0.80 

 

Total 18449 30433 8273 36170 47356 41258 69876 10498 3306 32176 
   

PA 0.71 0.96 0.79 0.94 0.98 0.92 0.91 0.79 0.95 0.67  
 

0.886 OA 

          0.866 Kappa 
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3.3.5.4 Summary and conclusions 

The segmentation is one of the major difficulties, that was already anticipated in the work document 
EEA/IDM/R0/17/003 (Kleeschulte, 2018). Aggregating large coherent ensembles that can present slight 
variations in their spectral signature while keeping the details small objects in the landscape is a major focus 
of this part of the methodology. 
 
Several classes (woody shrub, lichens and mosses, sparsely vegetated and non-vegetated) will be quite tricky 
to sample for the training of the classifier. The extraction of spectrally pure samples will be challenging for 
those classes, in part because of the various land covers that can be categorized in them, and also because 
samples at pan-European level will mostly be provided by CLC2018, with a spatial resolution of 25ha. 
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4 Conclusions and outlook 

This report presents a methods compendium for the WP33 - Time Series Analysis for Thematic Classification, 
which aims to develop a framework for time series analysis for thematic classification based on Sentinel 
multi-sensor constellation. With the others WP of ECoLaSS Task 3 (Automated High Data Volume Processing 
Lines), it constitutes a basis for the demonstration activities of Task 4 (Thematic Proof-of-Concept/Prototype 
on Continental/Global Scale), i.e. High Resolution Layers (HRLs), Grassland, Crop type and new LC/LU 
products.  
 
The first part of the document describes the state-of-the-art methods and strategies for the selection of 
candidate methods for the benchmarking. It reviews the automated reference sampling methods and the 
image compositing methods needed for classification, and then provides state-of-the-art of time series 
classification methods for time series HRLs Imperviousness, Forest and Grasslands, agriculture and new land 
cover products.  
 
The second part concerns the testing and benchmarking of input data for classification (automated reference 
sampling and image compositing methods) and of time series classification approaches selected. The latter 
are performed separately for different thematic fields: (i) Imperviousness, (ii) Forest, (iii) Grassland, (iv) 
Agriculture, and (v) new land cover products. 
 
The benchmark of the automated reference sampling methods concluded that the iForest exhibits additional 
important properties valuable for an outlier detection method. It is therefore suitable to be used for such 
purposes in future applications. Several other approaches could be tested, for instance potential 
thresholding approaches to know the fraction of outliers, or the use of decision function values as instance 
weights when using the automatically sampled reference data. Further research is also required in order to 
better understand why the outlier detection of the non-forest class failed. 
 
The compositing methods benchmark on S-2 images highlighted the importance of a performant cloud mask 
for such time series that is not as dense as medium resolution time series. With such a cloud mask that still 
present too many artefacts concerning delineation of cloud borders, the haze and cirrus detection and 
removal, the detection of cloud shadows and cloud commission for bright surfaces, the two feature-based 
algorithms are more appropriated as they achieve more spatial consistency and very few data gaps thanks to 
the use of the entire time series as input. On the contrary, the three time interval algorithms present many 
artefacts due to undetected clouds/cloud shadows and high confusion with bright surfaces in the cloud 
mask, and data gaps due to the short compositing period and a time series not dense enough. More 
specifically, other quantiles could be computed in phase two for the Quantile Compositing method.  
 
The benchmark of the time series classification methods is performed on S-1 and S-2 data for 
Imperviousness, Forest, Grassland, Agriculture and New land cover intermediate product, the soft bones. 
 
First, for Imperviousness, the analysis shows better results for a mono-temporal approach, the use of an 
active learning or SVM classifier and a subset based on the best available cloud-free images with both 
sensors S-1 and S-2. The active learning algorithm shows great classification performances whilst being very 
computer efficient, while The SVM classifier shows interesting results as an alternative method. As shown on 
the demonstration sites in the WP42, the best approach is the combination of optical classification based on 
a selection of the best scenes (in order to avoid unwanted non-detected clouds that tarnish the results) with 
the use of temporal statistics for S-1 datasets. 
 
Second, the potential of combining S-2 and S-1 data for the Forest delineation (tree cover and dominant leaf 
type mapping) is assessed by applying a random forest classifier to a number of experiments, using different 
combinations of sensors and time periods. Results of this analysis showed that the gain of the combined use 
of S-2 and S-1 time features compared to only focusing on S-2 data is insignificant. Indeed, the use of S-2 
data limited to the spring period provided the best ratio of high accuracy and lowest benchmarking cost. 
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However, this is always dependent on the data situation and increasing data volumes are naturally 
influencing the performance/cost ratio. Considering the lessons learned from phase 1, the integration of 
Sentinel-1 SAR into the TCM and DLT classification should not be completely discarded. Significant 
improvements in the tree cover detection could be achieved by the integration of SAR data (especially in 
agricultural areas and cloudy regions), whereas the added value of SAR time features for the leaf type 
discrimination is still insignificant. In view of the improved Tree Cover Density product at 10 m spatial 
resolution, which has been firstly tested and implemented in project phase 2, the ECoLaSS team has 
successfully demonstrated that median time features of the Sentinel-2 spectral bands are well suited for a 
consistent and seamless Tree Cover Density classification in high quality. 
 
Third, the Grassland classification benchmark highlights the potential of SAR data for the grassland 
classification and that the SAR threshold based grassland classification highly depends on dense time series. 
Largest misclassifications occur for water bodies, bare soil, and artificial surfaces. These areas can however 
easily be removed with optical data. The aggregated classification result with SAR and OPTICAL combined 
datasets are quite encouraging. More confusion between grasslands and cropland are present when using 
optical data only, whereas more misclassification between grassland and roads are present when using SAR 
data only. The combined approach shows more homogenous patches than using SAR data only. A further 
approach will be the combination of SAR features with vegetation indices derived from the optical data set. 
Recommendations for the demonstration sites in Task 4 in phase 1 implemented in phase 2 are the 
application of the supervised random forest based approach, the precise pre-processing of the dense time 
series including a topographic normalisation for hilly to mountainous terrain and the application of multi-
temporal filtering on gamma naught corrected imagery for SAR time series. Further research is specifically 
required to determine the optimal combination of features and indices derived from the optical as well as 
SAR dense time series.  
 
Fourth, the Agriculture classification benchmark is performed on Central (Germany) and Belgium site. The 
benchmarking results show promising accuracies and high potential of time series and derived time features 
for crop mask extraction and crop type monitoring. As for the Forest benchmark, using both S-1 and S-2 
increases the accuracies only marginally. The accuracies of the classifications based on S-2 is significantly 
higher than those based on S1. In order to reduce the computational effort, the input data for the crop 
mask/types classification similar regions than central site could be restricted to S-2 data. In order to reduce 
the processing cost without loss of accuracy, a group-aware feature could further selected. In addition, it 
could be further investigated if the reliability layers can be further enhanced by improving the class 
probabilities they are derived from. For a practical implementation of a future agricultural HRL, some more 
testing should be done when it comes to the differentiation of similar crop types, as well as regional 
diversity.  
 
Finally, the New Land Cover classification benchmark, performed on the South West and Central sites, 
concludes that the best results are obtained for the full set of spectral bands, closely followed in term of 
performance by the spectral index metrics. There is no predominant fusion method for mono-date pixel-
based classifications. However, the best results are obtained when two temporal frames are used to 
separate the various type of crops into two families. Several issues need to be addressed such as enforcing a 
uniform set of validation sampling, resolving the current inability to run an object-based classification on the 
2-tile test site and realizing a denser time series, to obtain more than just two seasons. In the second phase, 
the K-Means classification resulting from the Phenological intermediate products and leading to the creation 
of the MPA layer and its derivatives gives the best Softbone compromise between efficiency (Large scale 
Mean Shift segmentation method is low-efficient) and visual geometric accuracy. The raster classification, 
based on the results from phase 1 and phase 2 on all thematic classifications, has been chosen to be a 
random forest classifier for its efficiency and performance. 
 
The ECoLaSS project follows a two-phased approach of two times 18 months duration. This deliverable 
comprises the second issue, containing all relevant updates concerning the benchmarking of input data for 
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classification as well as the time series classification methods and final results from the tests in WP33, 
aligned with the corresponding demos in Task 4 WPs. 
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